scispace - formally typeset
Search or ask a question
Author

Hazel M. Weir

Bio: Hazel M. Weir is an academic researcher from AstraZeneca. The author has contributed to research in topics: Fulvestrant & Estrogen receptor. The author has an hindex of 14, co-authored 18 publications receiving 896 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Although many mutations lead to constitutive activity and reduced sensitivity to ER antagonists, only select mutants such as Y537S caused a magnitude of change associated with fulvestrant resistance in vivo, which point to a need for antagonists with optimal pharmacokinetic properties to realize clinical efficacy against certain ESR1 mutants.
Abstract: Recent studies have identified somatic ESR1 mutations in patients with metastatic breast cancer and found some of them to promote estrogen-independent activation of the receptor. The degree to which all recurrent mutants can drive estrogen-independent activities and reduced sensitivity to ER antagonists like fulvestrant is not established. In this report, we characterize the spectrum of ESR1 mutations from more than 900 patients. ESR1 mutations were detected in 10%, with D538G being the most frequent (36%), followed by Y537S (14%). Several novel, activating mutations were also detected (e.g., L469V, V422del, and Y537D). Although many mutations lead to constitutive activity and reduced sensitivity to ER antagonists, only select mutants such as Y537S caused a magnitude of change associated with fulvestrant resistance in vivo Correspondingly, tumors driven by Y537S, but not D5358G, E380Q, or S463P, were less effectively inhibited by fulvestrant than more potent and bioavailable antagonists, including AZD9496. These data point to a need for antagonists with optimal pharmacokinetic properties to realize clinical efficacy against certain ESR1 mutants.Significance: A diversity of activating ESR1 mutations exist, only some of which confer resistance to existing ER antagonists that might be overcome by next-generation inhibitors such as AZD9496. Cancer Discov; 7(3); 277-87. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 235.

261 citations

Journal ArticleDOI
TL;DR: The pharmacologic evidence showed that AZD9496 is an oral, nonsteroidal, selective estrogen receptor antagonist and downregulator in ER(+ breast cells that could provide meaningful benefit to ER(+) breast cancer patients.
Abstract: Fulvestrant is an estrogen receptor (ER) antagonist administered to breast cancer patients by monthly intramuscular injection. Given its present limitations of dosing and route of administration, a more flexible orally available compound has been sought to pursue the potential benefits of this drug in patients with advanced metastatic disease. Here we report the identification and characterization of AZD9496, a nonsteroidal small-molecule inhibitor of ERα, which is a potent and selective antagonist and downregulator of ERα in vitro and in vivo in ER-positive models of breast cancer. Significant tumor growth inhibition was observed as low as 0.5 mg/kg dose in the estrogen-dependent MCF-7 xenograft model, where this effect was accompanied by a dose-dependent decrease in PR protein levels, demonstrating potent antagonist activity. Combining AZD9496 with PI3K pathway and CDK4/6 inhibitors led to further growth-inhibitory effects compared with monotherapy alone. Tumor regressions were also seen in a long-term estrogen-deprived breast model, where significant downregulation of ERα protein was observed. AZD9496 bound and downregulated clinically relevant ESR1 mutants in vitro and inhibited tumor growth in an ESR1-mutant patient-derived xenograft model that included a D538G mutation. Collectively, the pharmacologic evidence showed that AZD9496 is an oral, nonsteroidal, selective estrogen receptor antagonist and downregulator in ER(+) breast cells that could provide meaningful benefit to ER(+) breast cancer patients. AZD9496 is currently being evaluated in a phase I clinical trial. Cancer Res; 76(11); 3307-18. ©2016 AACR.

155 citations

Journal ArticleDOI
TL;DR: The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described.
Abstract: The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described. A directed screen identified the 1-aryl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole motif as a novel, druglike ER ligand. Aided by crystal structures of novel ligands bound to an ER construct, medicinal chemistry iterations led to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (30b, AZD9496), a clinical candidate with high oral bioavailability across preclinical species that is currently being evaluated in phase I clinical trials for the treatment of advanced estrogen receptor (ER) positive breast cancer.

143 citations

Journal ArticleDOI
TL;DR: The generation and characterization of genome-edited T47D and MCF7 breast cancer cell lines with the two most common ESR1 mutations are described, revealing ligand-independent growth and endocrine resistance and identifying novel target genes involved in metastasis-associated phenotypes.
Abstract: Mutations in the estrogen receptor alpha (ERα) 1 gene (ESR1) are frequently detected in ER+ metastatic breast cancer, and there is increasing evidence that these mutations confer endocrine resistance in breast cancer patients with advanced disease. However, their functional role is not well-understood, at least in part due to a lack of ESR1 mutant models. Here, we describe the generation and characterization of genome-edited T47D and MCF7 breast cancer cell lines with the two most common ESR1 mutations, Y537S and D538G. Genome editing was performed using CRISPR and adeno-associated virus (AAV) technologies to knock-in ESR1 mutations into T47D and MCF7 cell lines, respectively. Various techniques were utilized to assess the activity of mutant ER, including transactivation, growth and chromatin-immunoprecipitation (ChIP) assays. The level of endocrine resistance was tested in mutant cells using a number of selective estrogen receptor modulators (SERMs) and degraders (SERDs). RNA sequencing (RNA-seq) was employed to study gene targets of mutant ER. Cells with ESR1 mutations displayed ligand-independent ER activity, and were resistant to several SERMs and SERDs, with cell line and mutation-specific differences with respect to magnitude of effect. The SERD AZ9496 showed increased efficacy compared to other drugs tested. Wild-type and mutant cell co-cultures demonstrated a unique evolution of mutant cells under estrogen deprivation and tamoxifen treatment. Transcriptome analysis confirmed ligand-independent regulation of ERα target genes by mutant ERα, but also identified novel target genes, some of which are involved in metastasis-associated phenotypes. Despite significant overlap in the ligand-independent genes between Y537S and D538G, the number of mutant ERα-target genes shared between the two cell lines was limited, suggesting context-dependent activity of the mutant receptor. Some genes and phenotypes were unique to one mutation within a given cell line, suggesting a mutation-specific effect. Taken together, ESR1 mutations in genome-edited breast cancer cell lines confer ligand-independent growth and endocrine resistance. These biologically relevant models can be used for further mechanistic and translational studies, including context-specific and mutation site-specific analysis of the ESR1 mutations.

114 citations

Journal ArticleDOI
12 Sep 2013-Oncogene
TL;DR: The data support the conclusion that 264RAD is a potent inhibitor of αvβ6 integrin, with some activity against αv β8Integrin, that reduces both tumour growth and metastasis.
Abstract: αvβ6 integrin expression is upregulated on a wide range of epithelial tumours, and is thought to play a role in modulating tumour growth. Here we describe a human therapeutic antibody 264RAD, which binds and inhibits αvβ6 integrin function. 264RAD cross-reacts with human, mouse and cynomolgus monkey αvβ6, and inhibits binding to all ligands including the latency-associated peptide of TGF-β. Screening across a range of integrins revealed that 264RAD also binds and inhibits the related integrin αvβ8, but not the integrins α5β1, αvβ3, αvβ5 and α4β1. In vitro 264RAD inhibited invasion of VB6 and Detroit 562 cells in a Matrigel invasion assay and αvβ6 mediated production of matrix metalloproteinase-9 in Calu-3 cells. It inhibited TGF-β-mediated activation of dermal skin fibroblasts by preventing local activation of TGF-β by NCI-H358 tumour cells in a tumour cell−fibroblast co-culture assay. In vivo 264RAD showed dose-dependent inhibition of Detroit 562 tumour growth, regressing established tumours when dosed at 20 mg/kg once weekly. The reduction in growth associated with 264RAD was related to a dose-dependent inhibition of Ki67 and phospho-ERK and a reduction of αvβ6 expression in the tumour cells, coupled to a reduction in fibronectin and alpha smooth muscle actin expression in stromal fibroblasts. 264RAD also reduced the growth and metastasis of orthotopic 4T1 tumours. At 20 mg/kg growth of both the primary tumour and the number of metastatic deposits in lung were reduced. The data support the conclusion that 264RAD is a potent inhibitor of αvβ6 integrin, with some activity against αvβ8 integrin, that reduces both tumour growth and metastasis.

78 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present is provided.
Abstract: Pd-catalyzed cross-coupling reactions that form C–N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C–N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts.

1,709 citations

Journal ArticleDOI
TL;DR: This manuscript offers a more comprehensive overview of the primary functions of each component of the TME in cancer initiation, progression, and invasion and includes primary therapeutic targeting markers for each player.
Abstract: Tumorigenesis is a complex and dynamic process, consisting of three stages: initiation, progression, and metastasis. Tumors are encircled by extracellular matrix (ECM) and stromal cells, and the physiological state of the tumor microenvironment (TME) is closely connected to every step of tumorigenesis. Evidence suggests that the vital components of the TME are fibroblasts and myofibroblasts, neuroendocrine cells, adipose cells, immune and inflammatory cells, the blood and lymphatic vascular networks, and ECM. This manuscript, based on the current studies of the TME, offers a more comprehensive overview of the primary functions of each component of the TME in cancer initiation, progression, and invasion. The manuscript also includes primary therapeutic targeting markers for each player, which may be helpful in treating tumors.

964 citations

Journal ArticleDOI
TL;DR: Induced protein degradation has the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Abstract: Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.

854 citations

Journal ArticleDOI
TL;DR: The signalling pathways that create cancer stem cells, cell-intrinsic mechanisms that could be exploited for selective elimination or induction of their differentiation, and the role of the tumour microenvironment in sustaining them are discussed.
Abstract: Since their identification in 1994, cancer stem cells (CSCs) have been objects of intensive study. Their properties and mechanisms of formation have become a major focus of current cancer research, in part because of their enhanced ability to initiate and drive tumour growth and their intrinsic resistance to conventional therapeutics. The discovery that activation of the epithelial-to-mesenchymal transition (EMT) programme in carcinoma cells can give rise to cells with stem-like properties has provided one possible mechanism explaining how CSCs arise and presents a possible avenue for their therapeutic manipulation. Here we address recent developments in CSC research, focusing on carcinomas that are able to undergo EMT. We discuss the signalling pathways that create these cells, cell-intrinsic mechanisms that could be exploited for selective elimination or induction of their differentiation, and the role of the tumour microenvironment in sustaining them. Finally, we propose ways to use our current knowledge of the complex biology of CSCs to design novel therapies to eliminate them.

800 citations

Journal ArticleDOI
TL;DR: This review highlights the most recent developments in lymphatic biology and how the lymphatic system contributes to the pathogenesis of various diseases involving immune and inflammatory responses and its role in disseminating tumor cells.
Abstract: Blood vessels form a closed circulatory system, whereas lymphatic vessels form a one-way conduit for tissue fluid and leukocytes. In most vertebrates, the main function of lymphatic vessels is to collect excess protein-rich fluid that has extravasated from blood vessels and transport it back into the blood circulation. Lymphatic vessels have an important immune surveillance function, as they import various antigens and activated antigen-presenting cells into the lymph nodes and export immune effector cells and humoral response factors into the blood circulation. Defects in lymphatic function can lead to lymph accumulation in tissues, dampened immune responses, connective tissue and fat accumulation, and tissue swelling known as lymphedema. This review highlights the most recent developments in lymphatic biology and how the lymphatic system contributes to the pathogenesis of various diseases involving immune and inflammatory responses and its role in disseminating tumor cells.

795 citations