scispace - formally typeset
Search or ask a question
Author

Heath Hofmann

Bio: Heath Hofmann is an academic researcher from University of Michigan. The author has contributed to research in topics: Battery (electricity) & Energy harvesting. The author has an hindex of 39, co-authored 145 publications receiving 8287 citations. Previous affiliations of Heath Hofmann include Pennsylvania State University & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an analytical expression for the optimal power flow from a rectified piezoelectric device is derived, and an energy harvesting circuit consisting of an AC-DC rectifier with an output capacitor, an electrochemical battery, and a switch-mode DC-DC converter that controls the energy flow into the battery.
Abstract: This paper describes an approach to harvesting electrical energy from a mechanically excited piezoelectric element. A vibrating piezoelectric device differs from a typical electrical power source in that it has a capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. An analytical expression for the optimal power flow from a rectified piezoelectric device is derived, and an "energy harvesting" circuit is proposed which can achieve this optimal power flow. The harvesting circuit consists of an AC-DC rectifier with an output capacitor, an electrochemical battery, and a switch-mode DC-DC converter that controls the energy flow into the battery. An adaptive control technique for the DC-DC converter is used to continuously implement the optimal power transfer theory and maximize the power stored by the battery. Experimental results reveal that use of the adaptive DC-DC converter increases power transfer by over 400% as compared to when the DC-DC converter is not used.

1,072 citations

01 Jan 2001
TL;DR: Experimental results reveal that use of the adaptive DC-DC converter increases power transfer by over 400% as compared to when the DC- DC converter is not used.

751 citations

Journal ArticleDOI
TL;DR: In this paper, an optimized method of harvesting vibrational energy with a piezoelectric element using a step-down DC-DC converter is presented, in which the converter regulates the power flow from the PPE element to the desired electronic load.
Abstract: An optimized method of harvesting vibrational energy with a piezoelectric element using a step-down DC-DC converter is presented. In this configuration, the converter regulates the power flow from the piezoelectric element to the desired electronic load. Analysis of the converter in discontinuous current conduction mode results in an expression for the duty cycle-power relationship. Using parameters of the mechanical system, the piezoelectric element, and the converter; the "optimal" duty cycle can be determined where the harvested power is maximized for the level of mechanical excitation. It is shown that, as the magnitude of the mechanical excitation increases, the optimal duty cycle becomes essentially constant, greatly simplifying the control of the step-down converter. The expression is validated with experimental data showing that the optimal duty cycle can be accurately determined and maximum energy harvesting attained. A circuit is proposed which implements this relationship, and experimental results show that the converter increases the harvested power by approximately 325%.

635 citations

Proceedings ArticleDOI
07 Nov 2002
TL;DR: In this paper, an optimized method of harvesting vibrational energy with a piezoelectric element using a step-down DC-DC converter is presented, in which the converter regulates the power flow from the PPE element to the desired electronic load.
Abstract: An optimized method of harvesting vibrational energy with a piezoelectric element using a step-down DC-DC converter is presented. In this configuration, the converter regulates the power flow from the piezoelectric element to the desired electronic load. Analysis of the converter in discontinuous current conduction mode results in an expression for the duty cycle-power relationship. Using parameters of the mechanical system, the piezoelectric element, and the converter an optimal duty cycle can be determined where the harvested power is maximized for a given frequency of mechanical excitation. It is shown that, as the magnitude of the excitation increases, the optimal duty cycle becomes essentially constant, greatly simplifying the control of the step-down converter. The expression is validated with experimental data showing that the optimal duty cycle can be accurately determined and maximum energy harvesting attained. A circuit is proposed which implements this relationship, and experimental results show that the converter increases the harvested power by approximately 325%.

423 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans as mentioned in this paper, and the use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement.
Abstract: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of a disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with piezoelectric materials. This article will review recent literature in the field of power harvesting and present the current state of power harvesting in its drive to create completely self-powered devices.

2,438 citations

Journal ArticleDOI
TL;DR: In this paper, a vibration-based piezoelectric generator has been developed as an enabling technology for wireless sensor networks, where the authors discuss the modeling, design, and optimization of the generator based on a two-layer bending element.
Abstract: Enabling technologies for wireless sensor networks have gained considerable attention in research communities over the past few years. It is highly desirable, even necessary in certain situations, for wireless sensor nodes to be self-powered. With this goal in mind, a vibration based piezoelectric generator has been developed as an enabling technology for wireless sensor networks. The focus of this paper is to discuss the modeling, design, and optimization of a piezoelectric generator based on a two-layer bending element. An analytical model of the generator has been developed and validated. In addition to providing intuitive design insight, the model has been used as the basis for design optimization. Designs of 1 cm3 in size generated using the model have demonstrated a power output of 375 µW from a vibration source of 2.5 m s−2 at 120 Hz. Furthermore, a 1 cm3 generator has been used to power a custom designed 1.9 GHz radio transmitter from the same vibration source.

1,782 citations

Journal ArticleDOI
03 Sep 2008
TL;DR: The principles and state-of-art in motion-driven miniature energy harvesters are reviewed and trends, suitable applications, and possible future developments are discussed.
Abstract: Energy harvesting generators are attractive as inexhaustible replacements for batteries in low-power wireless electronic devices and have received increasing research interest in recent years. Ambient motion is one of the main sources of energy for harvesting, and a wide range of motion-powered energy harvesters have been proposed or demonstrated, particularly at the microscale. This paper reviews the principles and state-of-art in motion-driven miniature energy harvesters and discusses trends, suitable applications, and possible future developments.

1,781 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the technologies in the wireless power transfer (WPT) area applicable to electric vehicle (EV) wireless charging, and the obstacles of charging time, range, and cost can be easily mitigated.
Abstract: Wireless power transfer (WPT) using magnetic resonance is the technology which could set human free from the annoying wires. In fact, the WPT adopts the same basic theory which has already been developed for at least 30 years with the term inductive power transfer. WPT technology is developing rapidly in recent years. At kilowatts power level, the transfer distance increases from several millimeters to several hundred millimeters with a grid to load efficiency above 90%. The advances make the WPT very attractive to the electric vehicle (EV) charging applications in both stationary and dynamic charging scenarios. This paper reviewed the technologies in the WPT area applicable to EV wireless charging. By introducing WPT in EVs, the obstacles of charging time, range, and cost can be easily mitigated. Battery technology is no longer relevant in the mass market penetration of EVs. It is hoped that researchers could be encouraged by the state-of-the-art achievements, and push forward the further development of WPT as well as the expansion of EV.

1,603 citations

01 Jan 2004
TL;DR: In this article, the authors discuss the research that has been performed in the area of power harvesting and the future goals that must be achieved for power harvesting systems to find their way into everyday use.
Abstract: The process of acquiring the energy surround- ing a system and converting it into usable electrical energy is termed power harvesting. In the last few years, there has been a surge of research in the area of power harvesting. This increase in research has been brought on by the mod- ern advances in wireless technology and low-power electron- ics such as microelectromechanical systems. The advances have allowed numerous doors to open for power harvesting systems in practical real-world applications. The use of pie- zoelectric materials to capitalize on the ambient vibrations surrounding a system is one method that has seen a dramat- ic rise in use for power harvesting. Piezoelectric materials have a crystalline structure that provides them with the ability to transform mechanical strain energy into electrical charge and, vice versa, to convert an applied electrical potential into mechanical strain. This property provides these materials with the ability to absorb mechanical energy from their surround- ings, usually ambient vibration, and transform it into electrical energy that can be used to power other devices. While piezo- electric materials are the major method of harvesting energy, other methods do exist; for example, one of the conventional methods is the use of electromagnetic devices. In this paper we discuss the research that has been performed in the area of power harvesting and the future goals that must be achieved for power harvesting systems to find their way into everyday use. and replacement of the battery can become a tedious task. In the case of wireless sensors, these devices can be placed in very remote locations such as structural sensors on a bridge or global positioning system (GPS) tracking devices on ani- mals in the wild. When the battery is extinguished of all its power, the sensor must be retrieved and the battery re- placed. Because of the remote placement of these devices, obtaining the sensor simply to replace the battery can be- come a very expensive task or even impossible. For in- stance, in civil infrastructure applications it is often desirable to embed the sensor, making battery replacement unfeasible. If ambient energy in the surrounding medium could be ob- tained, then it could be used to replace or charge the battery. One method is to use piezoelectric materials to obtain ener- gy lost due to vibrations of the host structure. This captured energy could then be used to prolong the life of the power supply or in the ideal case provide endless energy for the electronic devices lifespan. For these reasons, the amount of research devoted to power harvesting has been rapidly in- creasing. In this paper we review and detail some of the top- ics in power harvesting that have been receiving the most research, including energy harvesting from mechanical vi- bration, biological systems, and the effects of power har- vesting on the vibration of a structure.

1,242 citations