scispace - formally typeset
Search or ask a question
Author

Heather MacFarlane

Bio: Heather MacFarlane is an academic researcher from Harvard University. The author has contributed to research in topics: Trinucleotide repeat expansion & Huntington's disease. The author has an hindex of 3, co-authored 3 publications receiving 13854 citations.

Papers
More filters
Journal ArticleDOI
26 Mar 1993-Cell
TL;DR: In this article, the authors used haplotype analysis of linkage disequilibrium to spotlight a small segment of 4p16.3 as the likely location of the defect, which is expanded and unstable on HD chromosomes.

7,224 citations

Journal Article
25 Mar 1993-Cell
TL;DR: The Huntington's disease mutation involves an unstable DNA segment, similar to those described in fragile X syndrome, spino-bulbar muscular atrophy, and myotonic dystrophy, acting in the context of a novel 4p16.3 gene to produce a dominant phenotype.

6,992 citations

Journal ArticleDOI
TL;DR: A statistical model based on incomplete processing of Okazaki fragments during DNA replication was found to provide an excellent fit to the data but variation in parameter values among individuals suggests that the molecular mechanism might be more complex.
Abstract: Trinucleotide repeat disease alleles can undergo ‘dynamic’ mutations in which repeat number may change when a gene is transmitted from parent to offspring. By typing >3500 sperm, we determined the size distribution of Huntington’s disease (HD) germline mutations produced by 26 individuals from the Venezuelan cohort with CAG/ CTG repeat numbers ranging from 37 to 62. Both the mutation frequency and mean change in allele size increased with increasing somatic repeat number. The mutation frequencies averaged 82% and, for individuals with at least 50 repeats, 98%. The extraordinarily high mutation frequency levels are most consistent with a mutation process that occurs throughout germline mitotic divisions, rather than resulting from a single meiotic event. In several cases, the mean change in repeat number differed significantly among individuals with similar somatic allele sizes. This individual variation could not be attributed to age in a simple way or to ‘cis’ sequences, suggesting the influence of genetic background or other factors. A familial effect is suggested in one family where both the father and son gave highly unusual spectra compared with other individuals matched for age and repeat number. A statistical model based on incomplete processing of Okazaki fragments during DNA replication was found to provide an excellent fit to the data but variation in parameter values among individuals suggests that the molecular mechanism might be more complex.

107 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new algorithm for finding tandem repeats which works without the need to specify either the pattern or pattern size is presented and its ability to detect tandem repeats that have undergone extensive mutational change is demonstrated.
Abstract: A tandem repeat in DNA is two or more contiguous, approximate copies of a pattern of nucleotides. Tandem repeats have been shown to cause human disease, may play a variety of regulatory and evolutionary roles and are important laboratory and analytic tools. Extensive knowledge about pattern size, copy number, mutational history, etc. for tandem repeats has been limited by the inability to easily detect them in genomic sequence data. In this paper, we present a new algorithm for finding tandem repeats which works without the need to specify either the pattern or pattern size. We model tandem repeats by percent identity and frequency of indels between adjacent pattern copies and use statistically based recognition criteria. We demonstrate the algorithm’s speed and its ability to detect tandem repeats that have undergone extensive mutational change by analyzing four sequences: the human frataxin gene, the human β T cell receptor locus sequence and two yeast chromosomes. These sequences range in size from 3 kb up to 700 kb. A World Wide Web server interface at c3.biomath.mssm.edu/trf.html has been established for automated use of the program.

6,577 citations

Journal ArticleDOI
TL;DR: Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.
Abstract: The distinct protein aggregates that are found in Alzheimer's, Parkinson's, Huntington's and prion diseases seem to cause these disorders. Small intermediates - soluble oligomers - in the aggregation process can confer synaptic dysfunction, whereas large, insoluble deposits might function as reservoirs of the bioactive oligomers. These emerging concepts are exemplified by Alzheimer's disease, in which amyloid beta-protein oligomers adversely affect synaptic structure and plasticity. Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.

4,499 citations

Journal ArticleDOI
29 Jun 1995-Nature
TL;DR: A minimal cosegregating region containing the AD3 gene is defined, and at least 19 different transcripts encoded within this region corresponds to a novel gene whose product is predicted to contain multiple transmembrane domains and resembles an integral membrane protein.
Abstract: Some cases of Alzheimer's disease are inherited as an autosomal dominant trait. Genetic linkage studies have mapped a locus (AD3) associated with susceptibility to a very aggressive form of Alzheimer's disease to chromosome 14q24.3. We have defined a minimal cosegregating region containing the AD3 gene, and isolated at least 19 different transcripts encoded within this region. One of these transcripts (S182) corresponds to a novel gene whose product is predicted to contain multiple transmembrane domains and resembles an integral membrane protein. Five different missense mutations have been found that cosegregate with early-onset familial Alzheimer's disease. Because these changes occurred in conserved domains of this gene, and are not present in normal controls, they are likely to be causative of AD3.

4,110 citations

Journal ArticleDOI
29 Oct 1993-Science
TL;DR: Two broad mechanisms--oxidative stress and excessive activation of glutamate receptors--are converging and represent sequential as well as interacting processes that provide a final common pathway for cell vulnerability in the brain.
Abstract: There is an increasing amount of experimental evidence that oxidative stress is a causal, or at least an ancillary, factor in the neuropathology of several adult neurodegenerative disorders, as well as in stroke, trauma, and seizures. At the same time, excessive or persistent activation of glutamate-gated ion channels may cause neuronal degeneration in these same conditions. Glutamate and related acidic amino acids are thought to be the major excitatory neurotransmitters in brain and may be utilized by 40 percent of the synapses. Thus, two broad mechanisms--oxidative stress and excessive activation of glutamate receptors--are converging and represent sequential as well as interacting processes that provide a final common pathway for cell vulnerability in the brain. The broad distribution in brain of the processes regulating oxidative stress and mediating glutamatergic neurotransmission may explain the wide range of disorders in which both have been implicated. Yet differential expression of components of the processes in particular neuronal systems may account for selective neurodegeneration in certain disorders.

3,844 citations

Journal ArticleDOI
07 May 1993-Science
TL;DR: Colorectal tumor DNA was examined for somatic instability at (CA)n repeats on human chromosomes 5q, 15q, 17p, and 18q, and this instability was significantly correlated with the tumor's location in the proximal colon and with increased patient survival and loss of heterozygosity.
Abstract: Colorectal tumor DNA was examined for somatic instability at (CA)n repeats on human chromosomes 5q, 15q, 17p, and 18q. Differences between tumor and normal DNA were detected in 25 of the 90 (28 percent) tumors examined. This instability appeared as either a substantial change in repeat length (often heterogeneous in nature) or a minor change (typically two base pairs). Microsatellite instability was significantly correlated with the tumor's location in the proximal colon (P = 0.003), with increased patient survival (P = 0.02), and, inversely, with loss of heterozygosity for chromosomes 5q, 17p, and 18q. These data suggest that some colorectal cancers may arise through a mechanism that does not necessarily involve loss of heterozygosity.

3,093 citations