scispace - formally typeset
Search or ask a question
Author

Hector Geffner

Bio: Hector Geffner is an academic researcher from Pompeu Fabra University. The author has contributed to research in topics: Heuristics & Heuristic. The author has an hindex of 47, co-authored 159 publications receiving 8223 citations. Previous affiliations of Hector Geffner include IBM & Simón Bolívar University.


Papers
More filters
Journal ArticleDOI
TL;DR: A family of heuristic search planners are studied based on a simple and general heuristic that assumes that action preconditions are independent, which is used in the context of best-first and hill-climbing search algorithms, and tested over a large collection of domains.

1,023 citations

Proceedings ArticleDOI
14 Apr 2000
TL;DR: A new admissible heuristic for planning is formulated, used to guide an IDA* search, and empirically evaluate the resulting optimal planner over a number of domains.
Abstract: HSP and HSPr are two recent planners that search the state-space using an heuristic function extracted from Strips encodings. HSP does a forward search from the initial state recomputing the heuristic in every state, while HSPr does a regression search from the goal computing a suitable representation of the heuristic only once. Both planners have shown good performance, often producing solutions that are competitive in time and number of actions with the solutions found by Graphplan and SAT planners. HSP and HSPr. however, are not optimal planners. This is because the heuristic function is not admissible and the search algorithms are not optimal. In this paper we address this problem. We formulate a new admissible heuristic for planning, use it to guide an IDA* search, and empirically evaluate the resulting optimal planner over a number of domains. The main contribution is the idea underlying the heuristic that yields not one but a whole family of polynomial and admissible heuristics that trade accuracy for efficiency. The formulation is general and sheds some light on the heuristics used in HSP and Graphplan, and their relation. It exploits the factored (Strips) representation of planning problems, mapping shortest-path problems in state-space into suitably defined shortest-path problems in atom-space. The formulation applies with little variation to sequential and parallel planning, and problems with different action costs.

370 citations

Proceedings Article
14 Apr 2000
TL;DR: The formulation of planning as heuristic search with heuristics derived from problem representations in the context planning with incomplete information is made explicit, to test it over a number of domains, and to extend it to tasks like planning with sensing where the standard search algorithms do not apply.
Abstract: The formulation of planning as heuristic search with heuristics derived from problem representations has turned out to be a fruitful approach for classical planning. In this paper, we pursue a similar idea in the context planning with incomplete information. Planning with incomplete information can be formulated as a problem of search in belief space, where belief states can be either sets of states or more generally probability distribution over states. While the formulation (as the formulation of classical planning as heuristic search) is not particularly novel, the contribution of this paper is to make it explicit, to test it over a number of domains, and to extend it to tasks like planning with sensing where the standard search algorithms do not apply. The resulting planner appears to be competitive with the most recent conformant and contingent planners (e.g., CGP, SGP, and CMBP) while at the same time is more general as it can handle probabilistic actions and sensing, different action costs, and epistemic goals.

354 citations

Proceedings Article
09 Jun 2003
TL;DR: This paper introduces a labeling scheme into RTDP that speeds up its convergence while retaining its good anytime behavior, and shows that Labeled RTDP (LRTDP) converges orders of magnitude faster than RTDP, and faster also than another recent heuristic-search DP algorithm, LAO*.
Abstract: RTDP is a recent heuristic-search DP algorithm for solving non-deterministic planning problems with full observability. In relation to other dynamic programming methods, RTDP has two benefits: first, it does not have to evaluate the entire state space in order to deliver an optimal policy, and second, it can often deliver good policies pretty fast. On the other hand, RTDP final convergence is slow. In this paper we introduce a labeling scheme into RTDP that speeds up its convergence while retaining its good anytime behavior. The idea is to label a state s as solved when the heuristic values, and thus, the greedy policy defined by them, have converged over s and the states that can be reached from s with the greedy policy. While due to the presence of cycles, these labels cannot be computed in a recursive, bottom-up fashion in general, we show nonetheless that they can be computed quite fast, and that the overhead is compensated by the recomputations avoided. In addition, when the labeling procedure cannot label a state as solved, it improves the heuristic value of a relevant state. This results in the number of Labeled RTDP trials needed for convergence, unlike the number of RTDP trials, to be bounded. From a practical point of view, Labeled RTDP (LRTDP) converges orders of magnitude faster than RTDP, and faster also than another recent heuristic-search DP algorithm, LAO*. Moreover, LRTDP often converges faster than value iteration, even with the heuristic h = 0, thus suggesting that LRTDP has a quite general scope.

326 citations

Proceedings Article
11 Jul 2010
TL;DR: This work shows that the problem of probabilistic plan recognition can be solved efficiently using classical planners provided that the probability of a partially observed execution given a goal is defined in terms of the cost difference of achieving the goal under two conditions: complying with the observations, and not complying with them.
Abstract: Plan recognition is the problem of inferring the goals and plans of an agent after observing its behavior. Recently, it has been shown that this problem can be solved efficiently, without the need of a plan library, using slightly modified planning algorithms. In this work, we extend this approach to the more general problem of probabilistic plan recognition where a probability distribution over the set of goals is sought under the assumptions that actions have deterministic effects and both agent and observer have complete information about the initial state. We show that this problem can be solved efficiently using classical planners provided that the probability of a partially observed execution given a goal is defined in terms of the cost difference of achieving the goal under two conditions: complying with the observations, and not complying with them. This cost, and hence the posterior goal probabilities, are computed by means of two calls to a classical planner that no longer has to be modified in any way. A number of examples is considered to illustrate the quality, flexibility, and scalability of the approach.

292 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: By showing that argumentation can be viewed as a special form of logic programming with negation as failure, this paper introduces a general logic-programming-based method for generating meta-interpreters for argumentation systems, a method very much similar to the compiler-compiler idea in conventional programming.

4,386 citations

Journal ArticleDOI
TL;DR: A novel search strategy is introduced that combines hill-climbing with systematic search, and it is shown how other powerful heuristic information can be extracted and used to prune the search space.
Abstract: We describe and evaluate the algorithmic techniques that are used in the FF planning system. Like the HSP system, FF relies on forward state space search, using a heuristic that estimates goal distances by ignoring delete lists. Unlike HSP's heuristic, our method does not assume facts to be independent. We introduce a novel search strategy that combines hill-climbing with systematic search, and we show how other powerful heuristic information can be extracted and used to prune the search space. FF was the most successful automatic planner at the recent AIPS-2000 planning competition. We review the results of the competition, give data for other benchmark domains, and investigate the reasons for the runtime performance of FF compared to HSP.

1,994 citations

Book
01 Jan 2006
TL;DR: Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas.
Abstract: Constraint programming is a powerful paradigm for solving combinatorial search problems that draws on a wide range of techniques from artificial intelligence, computer science, databases, programming languages, and operations research. Constraint programming is currently applied with success to many domains, such as scheduling, planning, vehicle routing, configuration, networks, and bioinformatics. The aim of this handbook is to capture the full breadth and depth of the constraint programming field and to be encyclopedic in its scope and coverage. While there are several excellent books on constraint programming, such books necessarily focus on the main notions and techniques and cannot cover also extensions, applications, and languages. The handbook gives a reasonably complete coverage of all these lines of work, based on constraint programming, so that a reader can have a rather precise idea of the whole field and its potential. Of course each line of work is dealt with in a survey-like style, where some details may be neglected in favor of coverage. However, the extensive bibliography of each chapter will help the interested readers to find suitable sources for the missing details. Each chapter of the handbook is intended to be a self-contained survey of a topic, and is written by one or more authors who are leading researchers in the area. The intended audience of the handbook is researchers, graduate students, higher-year undergraduates and practitioners who wish to learn about the state-of-the-art in constraint programming. No prior knowledge about the field is necessary to be able to read the chapters and gather useful knowledge. Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas. The handbook is organized in two parts. The first part covers the basic foundations of constraint programming, including the history, the notion of constraint propagation, basic search methods, global constraints, tractability and computational complexity, and important issues in modeling a problem as a constraint problem. The second part covers constraint languages and solver, several useful extensions to the basic framework (such as interval constraints, structured domains, and distributed CSPs), and successful application areas for constraint programming. - Covers the whole field of constraint programming - Survey-style chapters - Five chapters on applications Table of Contents Foreword (Ugo Montanari) Part I : Foundations Chapter 1. Introduction (Francesca Rossi, Peter van Beek, Toby Walsh) Chapter 2. Constraint Satisfaction: An Emerging Paradigm (Eugene C. Freuder, Alan K. Mackworth) Chapter 3. Constraint Propagation (Christian Bessiere) Chapter 4. Backtracking Search Algorithms (Peter van Beek) Chapter 5. Local Search Methods (Holger H. Hoos, Edward Tsang) Chapter 6. Global Constraints (Willem-Jan van Hoeve, Irit Katriel) Chapter 7. Tractable Structures for CSPs (Rina Dechter) Chapter 8. The Complexity of Constraint Languages (David Cohen, Peter Jeavons) Chapter 9. Soft Constraints (Pedro Meseguer, Francesca Rossi, Thomas Schiex) Chapter 10. Symmetry in Constraint Programming (Ian P. Gent, Karen E. Petrie, Jean-Francois Puget) Chapter 11. Modelling (Barbara M. Smith) Part II : Extensions, Languages, and Applications Chapter 12. Constraint Logic Programming (Kim Marriott, Peter J. Stuckey, Mark Wallace) Chapter 13. Constraints in Procedural and Concurrent Languages (Thom Fruehwirth, Laurent Michel, Christian Schulte) Chapter 14. Finite Domain Constraint Programming Systems (Christian Schulte, Mats Carlsson) Chapter 15. Operations Research Methods in Constraint Programming (John Hooker) Chapter 16. Continuous and Interval Constraints(Frederic Benhamou, Laurent Granvilliers) Chapter 17. Constraints over Structured Domains (Carmen Gervet) Chapter 18. Randomness and Structure (Carla Gomes, Toby Walsh) Chapter 19. Temporal CSPs (Manolis Koubarakis) Chapter 20. Distributed Constraint Programming (Boi Faltings) Chapter 21. Uncertainty and Change (Kenneth N. Brown, Ian Miguel) Chapter 22. Constraint-Based Scheduling and Planning (Philippe Baptiste, Philippe Laborie, Claude Le Pape, Wim Nuijten) Chapter 23. Vehicle Routing (Philip Kilby, Paul Shaw) Chapter 24. Configuration (Ulrich Junker) Chapter 25. Constraint Applications in Networks (Helmut Simonis) Chapter 26. Bioinformatics and Constraints (Rolf Backofen, David Gilbert)

1,527 citations

Journal ArticleDOI
TL;DR: PDDL2.1 as discussed by the authors is a modelling language capable of expressing temporal and numeric properties of planning domains and has been used in the International Planning Competitions (IPC) since 1998.
Abstract: In recent years research in the planning community has moved increasingly towards application of planners to realistic problems involving both time and many types of resources. For example, interest in planning demonstrated by the space research community has inspired work in observation scheduling, planetary rover exploration and spacecraft control domains. Other temporal and resource-intensive domains including logistics planning, plant control and manufacturing have also helped to focus the community on the modelling and reasoning issues that must be confronted to make planning technology meet the challenges of application. The International Planning Competitions have acted as an important motivating force behind the progress that has been made in planning since 1998. The third competition (held in 2002) set the planning community the challenge of handling time and numeric resources. This necessitated the development of a modelling language capable of expressing temporal and numeric properties of planning domains. In this paper we describe the language, PDDL2.1, that was used in the competition. We describe the syntax of the language, its formal semantics and the validation of concurrent plans. We observe that PDDL2.1 has considerable modelling power -- exceeding the capabilities of current planning technology -- and presents a number of important challenges to the research community.

1,420 citations