scispace - formally typeset
Search or ask a question
Author

Hedi Ben Mansour

Bio: Hedi Ben Mansour is an academic researcher from University of Monastir. The author has contributed to research in topics: Genotoxicity & Medicine. The author has an hindex of 20, co-authored 106 publications receiving 1392 citations. Previous affiliations of Hedi Ben Mansour include University of Caen Lower Normandy & SIDI.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that P. putida mt-2 degrades the studied azo dyes in two steps: an azo-reduction followed by an oxygen-dependent metabolization, which would be responsible of genotoxicity and metabolic toxicity.

125 citations

Journal ArticleDOI
TL;DR: It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics, and the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia was evaluated.
Abstract: Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

100 citations

Journal ArticleDOI
TL;DR: It is concluded that CCE might have a hepatoprotective effect against aflatoxicosis in mice, probably acting by promoting the antioxidant defence systems.
Abstract: Aflatoxin B1 (AFB1) is potent hepatotoxic and hepatocarcinogenic agent. In aflatoxicosis, oxidative stress is a common mechanism contributing to initiation and progression of hepatic damage. The aim of this work was to evaluate the hepatoprotective effect of cactus cladode extract (CCE) on aflatoxin B1-induced liver damage in mice by measuring malondialdehyde (MDA) level, the protein carbonyls generation and the heat shock proteins Hsp 70 and Hsp 27 expressions in liver. We also looked for an eventual protective effect against AFB1-induced genotoxicity as determined by chromosome aberrations test, SOS Chromotest and DNA fragmentation assay. We further evaluated the modulation of p53, bax and bcl2 protein expressions in liver. Adult, healthy balbC (20-25 g) male mice were pre-treated by intraperitonial administration of CCE (50 mg/Kg.b.w) for 2 weeks. Control animals were treated 3 days a week for 4 weeks by intraperitonial administration of 250 μg/Kg.b.w AFB1. Animals treated by AFB1 and CCE were divided into two groups: the first group was administrated CCE 2 hours before each treatment with AFB1 3 days a week for 4 weeks. The second group was administrated without pre-treatment with CCE but this extract was administrated 24 hours after each treatment with AFB1 3 days a week for 4 weeks. Our results clearly showed that AFB1 induced significant alterations in oxidative stress markers. In addition, it has a genotoxic potential and it increased the expression of pro apoptotic proteins p53 and bax and decreased the expression of bcl2. The treatment of CCE before or after treatment with AFB1, showed (i) a total reduction of AFB1 induced oxidative damage markers, (ii) an anti-genotoxic effect resulting in an efficient prevention of chromosomal aberrations and DNA fragmentation compared to the group treated with AFB1 alone (iii) restriction of the effect of AFB1 by differential modulation of the expression of p53 which decreased as well as its associated genes such as bax and bcl2. We concluded that CCE might have a hepatoprotective effect against aflatoxicosis in mice, probably acting by promoting the antioxidant defence systems.

80 citations

Journal ArticleDOI
TL;DR: The results indicate that P. putida is a promising and improved alternative to treating industrial scale effluent compared to current chemical decolorization procedures used by the Tunisian textile industry.
Abstract: Introduction Textile industry is one of the most common and essential sectors in Tunisia. However, the treatment of textile effluents becomes a university because of their toxic impacts on waters, soils, flora, and fauna.

78 citations

Journal ArticleDOI
TL;DR: Investigation of pharmaceuticals belonging to several therapeutic groups in Mahdia, Tunisia revealed that sulfadiazine, sulfamethoxazole, and fluoxetine could pose medium/high risk to the tested aquatic organisms for maximum measured concentrations in wastewater (including hospital and WWTP samples).
Abstract: In the present study, the occurrence of 40 pharmaceuticals belonging to several therapeutic groups was investigated for the first time in hospital effluent, wastewater treatment plant influent and effluent, and seawater in Mahdia, Tunisia. Forty-six samples were collected within a 6-month sampling period. Pharmaceuticals were analyzed using solid-phase extraction followed by ultra-performance liquid chromatography-triple quadrupole mass spectrometry. Thirty-three out of the forty target compounds were detected over a wide concentration of ranges, from nanograms per liter to micrograms per liter, depending on the type of sample. Maximum values were detected for caffeine at 902 μgL-1 in hospital wastewater. This compound, as well as salicylic acid, sulfadiazine, and sulfamethizole, were detected in all samples. The average concentration of total pharmaceuticals in hospital wastewater (340 μgL-1) was higher than those detected in influent and effluent wastewater and seawater (275.11 and 0.2 μgL-1, respectively). Risk quotients (RQs) were also estimated to provide a preliminary environmental risk assessment and results revealed that sulfadiazine, sulfamethoxazole, and fluoxetine could pose medium/high risk to the tested aquatic organisms for maximum measured concentrations in wastewater (including hospital and WWTP samples). Although the measured environmental concentrations (MECs) detected in seawater samples might not pose a toxic effect to the aquatic organisms (except for salicylic acid, sulfamethoxazole and fluoxetine), further researches are needed due to the continuous release of wastewater in the environment and the limited efficiency of wastewater treatment processes.

66 citations


Cited by
More filters
01 Jan 2004
TL;DR: In this paper, the effects of subinhibitory concentrations of antibiotics and disinfectants on environmental bacteria, especially with respect to resistance, are investigated and the impact on the frequency of resistance transfer by antibacterials present in the environment is questionable.
Abstract: Antibiotics, disinfectants and bacteria resistant to them have been detected in environmental compartments such as waste water, surface water, ground water, sediments and soils. Antibiotics are released into the environment after their use in medicine, veterinary medicine and their employment as growth promoters in animal husbandry, fish farming and other fields. There is increasing concern about the growing resistance of pathogenic bacteria in the environment, and their ecotoxic effects. Increasingly, antibiotic resistance is seen as an ecological problem. This includes both the ecology of resistance genes and that of the resistant bacteria themselves. Little is known about the effects of subinhibitory concentrations of antibiotics and disinfectants on environmental bacteria, especially with respect to resistance. According to the present state of our knowledge, the impact on the frequency of resistance transfer by antibacterials present in the environment is questionable. The input of resistant bacteria into the environment seems to be an important source of resistance in the environment. The possible impact of resistant bacteria on the environment is not yet known. Further research into these issues is warranted.

867 citations

Journal ArticleDOI
TL;DR: This review summarises the methodologies used to evaluate the toxicity of azo dyes and their degradation products and discusses the recent studies on the decolouration or degradation using algae, yeast, filamentous fungi and bacteria, genetically modified microorganisms and microbiological systems combined with Advanced Oxidation Processes and Microbial Fuel Cells.

672 citations

Journal ArticleDOI
TL;DR: The microbial safety of foods continues to be a major concern to consumers, regulatory agencies and food industries throughout the world, which necessitates the exploration of alternative sources of safe, effective and acceptable natural preservatives.

547 citations

Journal ArticleDOI
TL;DR: In this article, a comparison of the present decolorization/degradation techniques for water-sensitized azo dyes is presented, where the hierarchy of reduce, reuse, and degrade is adopted and measures are taken to remove color from the industrial discharge.
Abstract: Azo dyes represent the largest class of industrial colorants. These are no longer used only for the coloration of textiles, plastics, paints, inks, and lacquers, but rather serve as key components in high-tech applications such as optical data storage, reprographics, display devices, dye-sensitized solar cells, energy transfer cascades, light-emitting diodes, laser welding processes, or heat management systems. Azo dyes are also of growing importance in the medical and biomedical fields. In most of these applications, the color is largely irrelevant and it is the ability of the colorants to absorb visible electromagnetic radiation with high efficiency, or other functional property, that is exploited. With the growing awareness and environmental concerns, it is imperative that the hierarchy of reduce, reuse, and degrade be adopted and measures be taken to remove color from the industrial discharge. The present review (a) embodies a comparison of the present decolorization/degradation techniques for water-s...

511 citations