scispace - formally typeset
Search or ask a question
Author

Heekyu Choi

Bio: Heekyu Choi is an academic researcher from Changwon National University. The author has contributed to research in topics: Ball mill & Grinding. The author has an hindex of 12, co-authored 51 publications receiving 664 citations.


Papers
More filters
Journal ArticleDOI
01 Dec 2009-Carbon
TL;DR: In this paper, the use of the curly small-diameter multi-walled carbon nanotubes (MWCNTs) in the MA prevented the agglomeration of composite powders, which is attributed to the beneficial role of the MWCNTs as grinding aids.

157 citations

Journal ArticleDOI
TL;DR: In this paper, the surface/shape of newly synthesized "Ag" nanoparticles is modified by planetary ball milling and the flattened particles are incorporated with the combination of small (15 nm) and large (300 nm) TiO2 nanoparticles in an aqueous solution.
Abstract: Nanofluid is a colloidal suspension which has received great attention over the past two decades, but its limited heat transfer enhancement is a matter of concern for industrial applications. We demonstrate an improvement in the thermal conductivity of TiO2 nanofluids with an addition of negligible amounts of modified silver “Ag” nanoparticles. In this work, the surface/shape of newly synthesized “Ag” nanoparticles is modified by planetary ball milling. Then, to enhance the thermal conductivity of TiO2 nanofluids, the flattened “Ag” particles are incorporated with the combination of small (15 nm) and large (300 nm) TiO2 nanoparticles in an aqueous solution. The thermal conductivities of Ag/TiO2–water nanofluids with various weight concentrations are measured at temperatures ranging from 15 to 40 °C. As a result, the present study confirms that the thermal conductivity of TiO2 based solution can be improved by introducing the flattened “Ag” particles.

134 citations

Journal ArticleDOI
TL;DR: In this article, an experimental investigation was carried out on the ultra-fine grinding of inorganic powders using a stirred ball mill and the power consumed in the grinding process was measured, and the comminution coefficient was examined, based on an analysis of the relationship between the experimental specific surface area and the particle size distribution of ground products.

61 citations

Journal ArticleDOI
TL;DR: In this paper, the crystal structure of BaTiO3 was investigated by a Rietveld refinement method; Fullprof, using X-ray diffraction data, within the reasonable goodness of fit, tetragonal symmetry was found in BST with x≤0.2.

48 citations

Journal ArticleDOI
TL;DR: In this paper, the successful fabrication of composite materials based on copper (Cu) particles and carbon nanotubes (CNTs) using a planetary ball milling (PBM) technique with an optimized condition was reported.

46 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors focus on the recent development in the synthesis, property characterization and application of aluminum, magnesium, and transition metal-based composites reinforced with carbon nanotubes and graphene nanosheets.
Abstract: One-dimensional carbon nanotubes and two-dimensional graphene nanosheets with unique electrical, mechanical and thermal properties are attractive reinforcements for fabricating light weight, high strength and high performance metal-matrix composites. Rapid advances of nanotechnology in recent years enable the development of advanced metal matrix nanocomposites for structural engineering and functional device applications. This review focuses on the recent development in the synthesis, property characterization and application of aluminum, magnesium, and transition metal-based composites reinforced with carbon nanotubes and graphene nanosheets. These include processing strategies of carbonaceous nanomaterials and their composites, mechanical and tribological responses, corrosion, electrical and thermal properties as well as hydrogen storage and electrocatalytic behaviors. The effects of nanomaterial dispersion in the metal matrix and the formation of interfacial precipitates on these properties are also addressed. Particular attention is paid to the fundamentals and the structure–property relationships of such novel nanocomposites.

877 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids, and showed that proper hybridization may make the hybrid nanoparticles very promising for heat transfer enhancement, however, lot of research works are still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.
Abstract: Researches on the nanofluids have been increased very rapidly over the past decade. In spite of some inconsistency in the reported results and insufficient understanding of the mechanism of the heat transfer in nanofluids, it has been emerged as a promising heat transfer fluid. In the continuation of nanofluids research, the researchers have also tried to use hybrid nanofluid recently, which is engineered by suspending dissimilar nanoparticles either in mixture or composite form. The idea of using hybrid nanofluids is to further improvement of heat transfer and pressure drop characteristics by trade-off between advantages and disadvantages of individual suspension, attributed to good aspect ratio, better thermal network and synergistic effect of nanomaterials. This review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids. Review showed that proper hybridization may make the hybrid nanofluids very promising for heat transfer enhancement, however, lot of research works is still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.

846 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive review on thermal conductivity of hybrid nanofluids by overviewing experimental, numerical and ANN (artificial neural networking) studies, and various factors such as nanoparticle type, concentration of nanoparticles, types of base fluid, size of nanoparticle, temperature, addition of surfactant, pH variation and sonication time are analyzed.

437 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes the contemporary investigations on synthesis, thermo-physical properties, heat transfer characteristics, hydrodynamic behavior and fluid flow characteristics reported by researchers on different hybrid nanofluids.
Abstract: Nanofluids have found crucial presence in heat transfer applications with their promising characteristics that can be controlled as per requirements. Nanofluids possess unique characteristics that have attracted many researchers over the past two decades to design new thermal systems for different engineering applications. Mono nanofluids, prepared with a single kind of nanoparticles, possess certain specific benefits owing to the properties of the suspended nanoparticle. However to further improve the characteristics of nanofluids, that could possess a number of favourable characteristics, researchers developed a new generation heat transfer fluid called hybrid nanofluid. Hybrid nanofluids are prepared either by dispersing dissimilar nanoparticles as individual constituents or by dispersing nanocomposite particles in the base fluid. Hybrid nanofluids may possess better thermal network and rheological properties due to synergistic effect. Researchers, to adjudge the advantages, disadvantages and their suitability for diversified applications, are extensively investigating the behavior and properties of these hybrid nanofluids. This review summarizes the contemporary investigations on synthesis, thermo-physical properties, heat transfer characteristics, hydrodynamic behavior and fluid flow characteristics reported by researchers on different hybrid nanofluids. This review also outlines the applications and challenges associated with hybrid nanofluid and makes some suggestions for future scope of research in this area.

402 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of hybrid nanoparticles, preparation of hybrid nanofluids, thermal properties, heat transfer, friction factor and the available Nusselt number and friction factor correlations are discussed.
Abstract: In the past decade, research on nanofluids has been increased rapidly and reports reveal that nanofluids are beneficial heat transfer fluids for engineering applications. The heat transfer enhancement of nanofluids is primarily dependent on thermal conductivity of nanoparticles, particle volume concentrations and mass flow rates. Under constant particle volume concentrations and flow rates, the heat transfer enhancement only depends on the thermal conductivity of the nanoparticles. The thermal conductivity of nanoparticles may be altered or changed by preparing hybrid (composite) nanoparticles. Hybrid nanoparticles are defined as nanoparticles composed by two or more different materials of nanometer size. The fluids prepared with hybrid nanoparticles are known as hybrid nanofluids. The motivation for the preparation of hybrid nanofluids is to obtain further heat transfer enhancement with augmented thermal conductivity of these nanofluids. This review covers the synthesis of hybrid nanoparticles, preparation of hybrid nanofluids, thermal properties, heat transfer, friction factor and the available Nusselt number and friction factor correlations. The review also demonstrates that hybrid nanofluids are more effective heat transfer fluids than single nanoparticles based nanofluids or conventional fluids. Notwithstanding, full understanding of the mechanisms associated with heat transfer enhancement of hybrid nanofluids is still lacking and, consequently it is required a considerable research effort in this area.

365 citations