scispace - formally typeset
Search or ask a question
Author

Heesung Kwon

Bio: Heesung Kwon is an academic researcher from United States Army Research Laboratory. The author has contributed to research in topics: Object detection & Kernel embedding of distributions. The author has an hindex of 23, co-authored 134 publications receiving 2746 citations. Previous affiliations of Heesung Kwon include University at Buffalo & University of Massachusetts Amherst.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the kernel RX-algorithm can easily be implemented by kernelizing the RX- algorithm in the feature space in terms of kernels that implicitly compute dot products in thefeature space.
Abstract: We present a nonlinear version of the well-known anomaly detection method referred to as the RX-algorithm. Extending this algorithm to a feature space associated with the original input space via a certain nonlinear mapping function can provide a nonlinear version of the RX-algorithm. This nonlinear RX-algorithm, referred to as the kernel RX-algorithm, is basically intractable mainly due to the high dimensionality of the feature space produced by the nonlinear mapping function. However, in this paper it is shown that the kernel RX-algorithm can easily be implemented by kernelizing the RX-algorithm in the feature space in terms of kernels that implicitly compute dot products in the feature space. Improved performance of the kernel RX-algorithm over the conventional RX-algorithm is shown by testing several hyperspectral imagery for military target and mine detection.

653 citations

Journal ArticleDOI
TL;DR: A novel deep convolutional neural network that is deeper and wider than other existing deep networks for hyperspectral image classification, called contextual deep CNN, can optimally explore local contextual interactions by jointly exploiting local spatio-spectral relationships of neighboring individual pixel vectors.
Abstract: In this paper, we describe a novel deep convolutional neural network (CNN) that is deeper and wider than other existing deep networks for hyperspectral image classification. Unlike current state-of-the-art approaches in CNN-based hyperspectral image classification, the proposed network, called contextual deep CNN, can optimally explore local contextual interactions by jointly exploiting local spatio-spectral relationships of neighboring individual pixel vectors. The joint exploitation of the spatio-spectral information is achieved by a multi-scale convolutional filter bank used as an initial component of the proposed CNN pipeline. The initial spatial and spectral feature maps obtained from the multi-scale filter bank are then combined together to form a joint spatio-spectral feature map. The joint feature map representing rich spectral and spatial properties of the hyperspectral image is then fed through a fully convolutional network that eventually predicts the corresponding label of each pixel vector. The proposed approach is tested on three benchmark data sets: the Indian Pines data set, the Salinas data set, and the University of Pavia data set. Performance comparison shows enhanced classification performance of the proposed approach over the current state-of-the-art on the three data sets.

578 citations

Journal ArticleDOI
TL;DR: In this article, a novel deep convolutional neural network (CNN) that is deeper and wider than other existing deep networks for hyperspectral image classification is proposed, which can optimally explore local contextual interactions by jointly exploiting local spatio-spectral relationships of neighboring individual pixel vectors.
Abstract: In this paper, we describe a novel deep convolutional neural network (CNN) that is deeper and wider than other existing deep networks for hyperspectral image classification. Unlike current state-of-the-art approaches in CNN-based hyperspectral image classification, the proposed network, called contextual deep CNN, can optimally explore local contextual interactions by jointly exploiting local spatio-spectral relationships of neighboring individual pixel vectors. The joint exploitation of the spatio-spectral information is achieved by a multi-scale convolutional filter bank used as an initial component of the proposed CNN pipeline. The initial spatial and spectral feature maps obtained from the multi-scale filter bank are then combined together to form a joint spatio-spectral feature map. The joint feature map representing rich spectral and spatial properties of the hyperspectral image is then fed through a fully convolutional network that eventually predicts the corresponding label of each pixel vector. The proposed approach is tested on three benchmark datasets: the Indian Pines dataset, the Salinas dataset and the University of Pavia dataset. Performance comparison shows enhanced classification performance of the proposed approach over the current state-of-the-art on the three datasets.

440 citations

Journal ArticleDOI
TL;DR: Adaptive anomaly detectors that find materials whose spectral characteristics are substantially different from those of the neighboring materials are proposed and the detection performance for each method is evaluated.
Abstract: We propose adaptive anomaly detectors that find materials whose spectral characteristics are substantially different from those of the neighboring materials. Target spectral vectors are assumed to have different statistical characteristics from the background vectors. We use a dual rectangular window that separates the local area into two regions—the inner window region (IWR) and outer window region (OWR). The statistical spectral differences between the IWR and OWR are exploited by generating subspace projection vectors onto which the IWR and OWR vectors are projected. Anomalies are detected if the pro- jection separation between the IWR and OWR vectors is greater than a predefined threshold. Four different methods are used to produce the subspace projection vectors. The four proposed anomaly detectors are applied to Hyperspectral Digital Imagery Collection Experiment (HY- DICE) images and the detection performance for each method is evaluated. © 2003 Society of Photo-Optical Instrumentation Engineers.

162 citations

Journal ArticleDOI
TL;DR: A kernel realization of a matched subspace detector that is based on a subspace mixture model defined in a high-dimensional feature space associated with a kernel function, which showed superior detection performance over the conventional MSD when tested on several synthetic data and real hyperspectral imagery.
Abstract: In this paper, we present a kernel realization of a matched subspace detector (MSD) that is based on a subspace mixture model defined in a high-dimensional feature space associated with a kernel function. The linear subspace mixture model for the MSD is first reformulated in a high-dimensional feature space and then the corresponding expression for the generalized likelihood ratio test (GLRT) is obtained for this model. The subspace mixture model in the feature space and its corresponding GLRT expression are equivalent to a nonlinear subspace mixture model with a corresponding nonlinear GLRT expression in the original input space. In order to address the intractability of the GLRT in the feature space, we kernelize the GLRT expression using the kernel eigenvector representations as well as the kernel trick where dot products in the feature space are implicitly computed by kernels. The proposed kernel-based nonlinear detector, so-called kernel matched subspace detector (KMSD), is applied to several hyperspectral images to detect targets of interest. KMSD showed superior detection performance over the conventional MSD when tested on several synthetic data and real hyperspectral imagery.

148 citations


Cited by
More filters
01 Jan 2006

3,012 citations

Journal ArticleDOI
TL;DR: This study shows how to design and train convolutional neural networks to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping.
Abstract: Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task-related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-based brain mapping. Hum Brain Mapp 38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc.

1,675 citations

Journal ArticleDOI
TL;DR: A tutorial/overview cross section of some relevant hyperspectral data analysis methods and algorithms, organized in six main topics: data fusion, unmixing, classification, target detection, physical parameter retrieval, and fast computing.
Abstract: Hyperspectral remote sensing technology has advanced significantly in the past two decades. Current sensors onboard airborne and spaceborne platforms cover large areas of the Earth surface with unprecedented spectral, spatial, and temporal resolutions. These characteristics enable a myriad of applications requiring fine identification of materials or estimation of physical parameters. Very often, these applications rely on sophisticated and complex data analysis methods. The sources of difficulties are, namely, the high dimensionality and size of the hyperspectral data, the spectral mixing (linear and nonlinear), and the degradation mechanisms associated to the measurement process such as noise and atmospheric effects. This paper presents a tutorial/overview cross section of some relevant hyperspectral data analysis methods and algorithms, organized in six main topics: data fusion, unmixing, classification, target detection, physical parameter retrieval, and fast computing. In all topics, we describe the state-of-the-art, provide illustrative examples, and point to future challenges and research directions.

1,604 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: RefineDet as discussed by the authors proposes an anchor refinement module and an object detection module to adjust the locations and sizes of anchors to provide better initialization for the subsequent regressor, which achieves state-of-the-art detection accuracy with high efficiency.
Abstract: For object detection, the two-stage approach (e.g., Faster R-CNN) has been achieving the highest accuracy, whereas the one-stage approach (e.g., SSD) has the advantage of high efficiency. To inherit the merits of both while overcoming their disadvantages, in this paper, we propose a novel single-shot based detector, called RefineDet, that achieves better accuracy than two-stage methods and maintains comparable efficiency of one-stage methods. RefineDet consists of two inter-connected modules, namely, the anchor refinement module and the object detection module. Specifically, the former aims to (1) filter out negative anchors to reduce search space for the classifier, and (2) coarsely adjust the locations and sizes of anchors to provide better initialization for the subsequent regressor. The latter module takes the refined anchors as the input from the former to further improve the regression accuracy and predict multi-class label. Meanwhile, we design a transfer connection block to transfer the features in the anchor refinement module to predict locations, sizes and class labels of objects in the object detection module. The multitask loss function enables us to train the whole network in an end-to-end way. Extensive experiments on PASCAL VOC 2007, PASCAL VOC 2012, and MS COCO demonstrate that RefineDet achieves state-of-the-art detection accuracy with high efficiency. Code is available at https://github.com/sfzhang15/RefineDet.

1,306 citations

Journal ArticleDOI
TL;DR: This work introduces EEGNet, a compact convolutional neural network for EEG-based BCIs, and introduces the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI.
Abstract: Objective Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional neural networks (CNNs), which have been used in computer vision and speech recognition to perform automatic feature extraction and classification, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible. Approach In this work we introduce EEGNet, a compact convolutional neural network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet, both for within-subject and cross-subject classification, to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). Main results We show that EEGNet generalizes across paradigms better than, and achieves comparably high performance to, the reference algorithms when only limited training data is available across all tested paradigms. In addition, we demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features. Significance Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks. Our models can be found at: https://github.com/vlawhern/arl-eegmodels.

1,231 citations