scispace - formally typeset
Search or ask a question
Author

Heinz Decker

Bio: Heinz Decker is an academic researcher from University of Mainz. The author has contributed to research in topics: Hemocyanin & Oxygen binding. The author has an hindex of 36, co-authored 154 publications receiving 5155 citations. Previous affiliations of Heinz Decker include Oregon State University & University of Kiel.


Papers
More filters
Journal ArticleDOI
TL;DR: The critical review describes the known dicopper systems mediating the aromatic hydroxylation of monophenolic substrates as structural and functional models of the type 3 copper enzyme tyrosinase, which catalyzes the ortho-hydroxylations of tyrosine to DOPA and the subsequent two-electron oxidation to dopaquinone.
Abstract: The critical review describes the known dicopper systems mediating the aromatic hydroxylation of monophenolic substrates. Such systems are of interest as structural and functional models of the type 3 copper enzyme tyrosinase, which catalyzes the ortho-hydroxylation of tyrosine to DOPA and the subsequent two-electron oxidation to dopaquinone. Small-molecule systems involving μ-η²:η² peroxo, bis-μ-oxo and trans-μ-1,2 peroxo dicopper cores are considered separately. These tyrosinase models are contrasted to copper–dioxygen systems inducing radical reactions, and the different mechanistic pathways are discussed. In addition to considering the stoichiometric conversion of phenolic substrates, the available catalytic systems are described. The second part of the review deals with tyrosinase. After an introduction on the occurrence and function of tyrosinases, several aspects of the chemical reactivity of this class of enzymes are described. The analogies between the small-molecule and the enzymatic system are considered, and the implications for the reaction pathway of tyrosinase are discussed (140 references).

373 citations

Journal ArticleDOI
TL;DR: On the basis of their molecular structures, hemocyanins are used as model systems to understand the substrate-active-site interaction between catecholoxidases and tyrosinases.

339 citations

Journal ArticleDOI
TL;DR: It is reported here in contrast that the copper protein hemocyanin of the tarantulaEurypelma californicum exhibits two different functions, which occur at the same active site.

214 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

5,389 citations

Journal ArticleDOI
Paramvir S. Dehal1, Yutaka Satou2, Robert K. Campbell3, Jarrod Chapman1, Bernard M. Degnan4, Anthony W. De Tomaso5, Brad Davidson6, Anna Di Gregorio6, Maarten D. Sollewijn Gelpke1, David Goodstein1, Naoe Harafuji6, Kenneth E. M. Hastings7, Isaac Ho1, Kohji Hotta8, Wayne Huang1, Takeshi Kawashima2, Patrick Lemaire9, Diego Martinez1, Ian A. Meinertzhagen10, Simona Necula1, Masaru Nonaka11, Nik Putnam1, Sam Rash1, Hidetoshi Saiga12, Masanobu Satake13, Astrid Terry1, Lixy Yamada2, Hong Gang Wang14, Satoko Awazu2, Kaoru Azumi15, Jeffrey L. Boore1, Margherita Branno16, Stephen T. Chin-Bow17, Rosaria DeSantis16, Sharon A. Doyle1, Pilar Francino1, David N. Keys1, David N. Keys6, Shinobu Haga8, Hiroko Hayashi8, Kyosuke Hino2, Kaoru S. Imai2, Kazuo Inaba13, Shungo Kano16, Shungo Kano2, Kenji Kobayashi2, Mari Kobayashi2, Byung In Lee1, Kazuhiro W. Makabe2, Chitra Manohar1, Giorgio Matassi16, Mónica Medina1, Yasuaki Mochizuki2, Steve Mount18, Tomomi Morishita8, Sachiko Miura8, Akie Nakayama2, Satoko Nishizaka8, Hisayo Nomoto8, Fumiko Ohta8, Kazuko Oishi8, Isidore Rigoutsos17, Masako Sano8, Akane Sasaki2, Yasunori Sasakura2, Eiichi Shoguchi2, Tadasu Shin-I8, Antoinetta Spagnuolo16, Didier Y.R. Stainier19, Miho Suzuki20, Olivier Tassy9, Naohito Takatori2, Miki Tokuoka2, Kasumi Yagi2, Fumiko Yoshizaki11, Shuichi Wada2, Cindy Zhang1, P. Douglas Hyatt21, Frank W. Larimer21, Chris Detter1, Norman A. Doggett22, Tijana Glavina1, Trevor Hawkins1, Paul G. Richardson1, Susan Lucas1, Yuji Kohara8, Michael Levine6, Nori Satoh2, Daniel S. Rokhsar1, Daniel S. Rokhsar6 
13 Dec 2002-Science
TL;DR: A draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis, is generated, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development.
Abstract: The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.

1,582 citations

Journal ArticleDOI
TL;DR: A major innate defense system in invertebrates is the melanization of pathogens and damaged tissues, which is controlled by the enzyme phenoloxidase that in turn is regulated in a highly elaborate manner for avoiding unnecessary production of highly toxic and reactive compounds.
Abstract: Summary: A major innate defense system in invertebrates is the melanization of pathogens and damaged tissues. This important process is controlled by the enzyme phenoloxidase (PO) that in turn is regulated in a highly elaborate manner for avoiding unnecessary production of highly toxic and reactive compounds. Recent progress, especially in arthropods, in the elucidation of mechanisms controlling the activation of zymogenic proPO into active PO by a cascade of serine proteinases and other factors is reviewed. The proPO-activating system (proPO system) is triggered by the presence of minute amounts of compounds of microbial origins, such as β-1,3-glucans, lipopolysaccharides, and peptidoglycans, which ensures that the system will become active in the presence of potential pathogens. The presence of specific proteinase inhibitors prevents superfluous activation. Concomitant with proPO activation, many other immune reactions will be produced, such as the generation of factors with anti-microbial, cytotoxic, opsonic, or encapsulation-promoting activities.

1,578 citations

Journal ArticleDOI
TL;DR: Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning.
Abstract: The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs) Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer © 2015 Wiley Periodicals, Inc

1,445 citations