scispace - formally typeset
Search or ask a question
Author

Helen E. Mason

Bio: Helen E. Mason is an academic researcher from University of Cambridge. The author has contributed to research in topics: Solar flare & Flare. The author has an hindex of 57, co-authored 170 publications receiving 13100 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The CHIANTI database as mentioned in this paper is a set of atomic data and transition probabilities necessary to calculate the emission line spectrum of astrophysical plasmas, including atomic energy levels, atomic radiative data such as wavelengths, weighted oscillator strengths and A values, and electron collisional excitation rates.
Abstract: CHIANTI consists of a critically evaluated set of atomic data and transition probabilities necessary to calculate the emission line spectrum of astrophysical plasmas. The data consist of atomic energy levels, atomic radiative data such as wavelengths, weighted oscillator strengths and A values, and electron collisional excitation rates. A set of programs that use these data to calculate the spectrum in a desired wavelength range as a function of temperature and density is also provided. A suite of programs has been developed to carry out plasma diagnostics of astrophysical plasmas. The state-of-the-art contents of the CHIANTI database will be described and some of the most important results obtained from the use of the CHIANTI database will be reviewed.

2,116 citations

Journal ArticleDOI
TL;DR: The CHIANTI spectral code as mentioned in this paper consists of two parts: an atomic database and a suite of computer programs in Python and IDL, together, they allow the calculation of the optically thin spectrum of astrophysical objects and provide spectroscopic plasma diagnostics for the analysis of the astrophysical spectra.
Abstract: The CHIANTI spectral code consists of two parts: an atomic database and a suite of computer programs in Python and IDL. Together, they allow the calculation of the optically thin spectrum of astrophysical objects and provide spectroscopic plasma diagnostics for the analysis of astrophysical spectra. The database includes atomic energy levels, wavelengths, radiative transition probabilities, collision excitation rate coefficients, ionization, and recombination rate coefficients, as well as data to calculate free-free, free-bound, and two-photon continuum emission. Version 7.1 has been released, which includes improved data for several ions, recombination rates, and element abundances. In particular, it provides a large expansion of the CHIANTI models for key Fe ions from Fe VIII to Fe XIV to improve the predicted emission in the 50-170 A wavelength range. All data and programs are freely available at http://www.chiantidatabase.org and in SolarSoft, while the Python interface to CHIANTI can be found at http://chiantipy.sourceforge.net.

570 citations

Journal ArticleDOI
TL;DR: The CHIANTI database as mentioned in this paper provides a set of atomic data for the interpretation of astrophysical spectra emitted by collisionally dominated, high temperature, optically thin sources.
Abstract: Aims. The goal of the CHIANTI atomic database is to provide a set of atomic data for the interpretation of astrophysical spectra emitted by collisionally dominated, high temperature, optically thin sources. Methods. A complete set of ground level ionization and recombination rate coefficients has been assembled for all atoms and ions of the elements of H through Zn and inserted into the latest version of the CHIANTI database, CHIANTI 6. Ionization rate coefficients are taken from the recent work of Dere (2007, A&A, 466, 771) and recombination rates from a variety of sources in the literature. These new rate coefficients have allowed the calculation of a new set of ionization equilibria and radiative loss rate coefficients. For some ions, such as Fe viii and Fe ix, there are significant differences from previous calculations. In addition, existing atomic parameters have been revised and new atomic parameters inserted into the database. Results. For each ion in the CHIANTI database, elemental abundances, ionization potentials, atomic energy levels, radiative rates, electron and proton collisional rate coefficients, ionization and recombination rate coefficients, and collisional ionization equilibrium populations are provided. In addition, parameters for the calculation of the continuum due to bremsstrahlung, radiative recombination and two-photon decay are provided. A suite of programs written in the Interactive Data Language (IDL) are available to calculate line and continuum emissivities and other properties. All data and programs are freely available at http://wwwsolar.nrl.navy.mil/ chianti

513 citations

Journal ArticleDOI
TL;DR: The CHIANTI atomic database as mentioned in this paper contains atomic energy levels, wavelengths, radiative transition probabilities, and collisional excitation data for a large number of ions of astrophysical interest.
Abstract: The CHIANTI atomic database contains atomic energy levels, wavelengths, radiative transition probabilities, and collisional excitation data for a large number of ions of astrophysical interest. CHIANTI also includes a suite of IDL routines to calculate synthetic spectra and carry out plasma diagnostics. Version 5 has been released, which includes several new features, as well as new data for many ions. The new features in CHIANTI are as follows: the inclusion of ionization and recombination rates to individual excited levels as a means to populate atomic levels; data for Kα and Kβ emission from Fe II to Fe XXIV; new data for high-energy configurations in Fe XVII to Fe XXIII; and a complete reassessment of level energies and line identifications in the X-ray range, multitemperature particle distributions, and photoexcitation from any user-defined radiation field. New data for ions already in the database, as well as data for ions not present in earlier versions of the database, are also included. Version 5 of CHIANTI represents a major improvement in the calculation of line emissivities and synthetic spectra in the X-ray range and expands and improves theoretical spectra calculations in all other wavelength ranges.

495 citations

Journal ArticleDOI
TL;DR: This version of the CHIANTI database includes a large amount of new data and ions, which represent a significant improvement in the soft X-ray, EUV and UV spectral regions, which several space missions currently cover.
Abstract: We present version 8 of the CHIANTI database. This version includes a large amount of new data and ions, which represent a significant improvement in the soft X-ray, extreme UV (EUV) and UV spectral regions, which several space missions currently cover. New data for neutrals and low charge states are also added. The data are assessed, but to improve the modelling of low-temperature plasma the effective collision strengths for most of the new datasets are not spline-fitted as previously, but are retained as calculated. This required a change of the format of the CHIANTI electron excitation files. The format of the energy files has also been changed. Excitation rates between all the levels are retained for most of the new datasets, so the data can in principle be used to model high-density plasma. In addition, the method for computing the differential emission measure used in the CHIANTI software has been changed.

487 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Atmospheric Imaging Assembly (AIA) as discussed by the authors provides multiple simultaneous high-resolution full-disk images of the corona and transition region up to 0.5 R ⊙ above the solar limb with 1.5-arcsec spatial resolution and 12-second temporal resolution.
Abstract: The Atmospheric Imaging Assembly (AIA) provides multiple simultaneous high-resolution full-disk images of the corona and transition region up to 0.5 R ⊙ above the solar limb with 1.5-arcsec spatial resolution and 12-second temporal resolution. The AIA consists of four telescopes that employ normal-incidence, multilayer-coated optics to provide narrow-band imaging of seven extreme ultraviolet (EUV) band passes centered on specific lines: Fe xviii (94 A), Fe viii, xxi (131 A), Fe ix (171 A), Fe xii, xxiv (193 A), Fe xiv (211 A), He ii (304 A), and Fe xvi (335 A). One telescope observes C iv (near 1600 A) and the nearby continuum (1700 A) and has a filter that observes in the visible to enable coalignment with images from other telescopes. The temperature diagnostics of the EUV emissions cover the range from 6×104 K to 2×107 K. The AIA was launched as a part of NASA’s Solar Dynamics Observatory (SDO) mission on 11 February 2010. AIA will advance our understanding of the mechanisms of solar variability and of how the Sun’s energy is stored and released into the heliosphere and geospace.

4,321 citations

Journal ArticleDOI
TL;DR: In this article, solar photospheric and meteoritic CI chondrite abundance determinations for all elements are summarized and the best currently available photosphere abundances are selected, including the meteoritic and solar abundances of a few elements (e.g., noble gases, beryllium, boron, phosphorous, sulfur).
Abstract: Solar photospheric and meteoritic CI chondrite abundance determinations for all elements are summarized and the best currently available photospheric abundances are selected. The meteoritic and solar abundances of a few elements (e.g., noble gases, beryllium, boron, phosphorous, sulfur) are discussed in detail. The photospheric abundances give mass fractions of hydrogen (X ¼ 0:7491), helium (Y ¼ 0:2377), and heavy elements (Z ¼ 0:0133), leading to Z=X ¼ 0:0177, which is lower than the widely used Z=X ¼ 0:0245 from previous compilations. Recent results from standard solar models considering helium and heavy-element settling imply that photospheric abundances and mass fractions are not equal to protosolar abundances (representative of solar system abundances). Protosolar elemental and isotopic abundances are derived from photospheric abundances by considering settling effects. Derived protosolar mass fractions are X0 ¼ 0:7110, Y0 ¼ 0:2741, and Z0 ¼ 0:0149. The solar system and photospheric abundance tables are used to compute self-consistent sets of condensation temperatures for all elements. Subject headings: astrochemistry — meteors, meteoroids — solar system: formation — Sun: abundances — Sun: photosphere

4,305 citations

Journal ArticleDOI
TL;DR: In this article, the current status of our knowledge of the chemical composition of the Sun is reviewed, essentially derived from the analysis of the solar photospheric spectrum, and a comparison of solar and meteoritic abundances confirms that there is a very good agreement between the two sets of abundances.
Abstract: We review the current status of our knowledge of the chemical composition of the Sun, essentially derived from the analysis of the solar photospheric spectrum. The comparison of solar and meteoritic abundances confirms that there is a very good agreement between the two sets of abundances. They are used to construct a Standard Abundance Distribution.

3,253 citations

01 Jan 1998
TL;DR: In this article, the current status of our knowledge of the chemical composition of the Sun is reviewed, essentially derived from the analysis of the solar photospheric spectrum, and a comparison of solar and meteoritic abundances confirms that there is a very good agreement between the two sets of abundances.
Abstract: We review the current status of our knowledge of the chemical composition of the Sun, essentially derived from the analysis of the solar photospheric spectrum. The comparison of solar and meteoritic abundances confirms that there is a very good agreement between the two sets of abundances. They are used to construct a Standard Abundance Distribution.

2,160 citations

Journal ArticleDOI
TL;DR: The Astrophysical Plasma Emission Code (APEC) as mentioned in this paper uses atomic data from the companion ASTPED database to calculate spectral models for hot plasmas, such as collisional and radiative rates, recombination cross sections, dielectronic recombination rates, and satellite line wavelengths.
Abstract: New X-ray observatories (Chandra and XMM-Newton) are providing a wealth of high-resolution X-ray spectra in which hydrogen- and helium-like ions are usually strong features. We present results from a new collisional-radiative plasma code, the Astrophysical Plasma Emission Code (APEC), which uses atomic data in the companion Astrophysical Plasma Emission Database (APED) to calculate spectral models for hot plasmas. APED contains the requisite atomic data such as collisional and radiative rates, recombination cross sections, dielectronic recombination rates, and satellite line wavelengths. We compare the APEC results to other plasma codes for hydrogen- and helium-like diagnostics and test the sensitivity of our results to the number of levels included in the models. We find that dielectronic recombination with hydrogen-like ions into high (n = 6-10) principal quantum numbers affects some helium-like line ratios from low-lying (n = 2) transitions.

2,124 citations