scispace - formally typeset
Search or ask a question
Author

Helen H. Hobbs

Bio: Helen H. Hobbs is an academic researcher from University of Texas Southwestern Medical Center. The author has contributed to research in topics: Cholesterol & LDL receptor. The author has an hindex of 98, co-authored 198 publications receiving 48997 citations. Previous affiliations of Helen H. Hobbs include University of Texas System & Southern Methodist University.


Papers
More filters
Journal ArticleDOI
TL;DR: The prevalence of hepatic steatosis was greater in men than women among whites, but not in blacks or Hispanics, and significant ethnic and sex differences in the prevalence may have a profound impact on susceptibility to Steatosis‐related liver disease.

3,429 citations

Journal ArticleDOI
TL;DR: It is indicated that moderate lifelong reduction in the plasma level of LDL cholesterol is associated with a substantial Reduction in the incidence of coronary events, even in populations with a high prevalence of non-lipid-related cardiovascular risk factors.
Abstract: Background A low plasma level of low-density lipoprotein (LDL) cholesterol is associated with reduced risk of coronary heart disease (CHD), but the effect of lifelong reductions in plasma LDL cholesterol is not known. We examined the effect of DNA-sequence variations that reduce plasma levels of LDL cholesterol on the incidence of coronary events in a large population. Methods We compared the incidence of CHD (myocardial infarction, fatal CHD, or coronary revascularization) over a 15-year interval in the Atherosclerosis Risk in Communities study according to the presence or absence of sequence variants in the proprotein convertase subtilisin/kexin type 9 serine protease gene (PCSK9) that are associated with reduced plasma levels of LDL cholesterol. Results Of the 3363 black subjects examined, 2.6 percent had nonsense mutations in PCSK9; these mutations were associated with a 28 percent reduction in mean LDL cholesterol and an 88 percent reduction in the risk of CHD (P=0.008 for the reduction; hazard ratio...

2,828 citations

Journal ArticleDOI
TL;DR: Variation in PNPLA3 contributes to ancestry-related and inter-individual differences in hepatic fat content and susceptibility to NAFLD.
Abstract: Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem of unknown etiology that varies in prevalence among ancestry groups. To identify genetic variants contributing to differences in hepatic fat content, we carried out a genome-wide association scan of nonsynonymous sequence variations (n = 9,229) in a population comprising Hispanic, African American and European American individuals. An allele in PNPLA3 (rs738409[G], encoding I148M) was strongly associated with increased hepatic fat levels (P = 5.9 x 10(-10)) and with hepatic inflammation (P = 3.7 x 10(-4)). The allele was most common in Hispanics, the group most susceptible to NAFLD; hepatic fat content was more than twofold higher in PNPLA3 rs738409[G] homozygotes than in noncarriers. Resequencing revealed another allele of PNPLA3 (rs6006460[T], encoding S453I) that was associated with lower hepatic fat content in African Americans, the group at lowest risk of NAFLD. Thus, variation in PNPLA3 contributes to ancestry-related and inter-individual differences in hepatic fat content and susceptibility to NAFLD.

2,651 citations

Journal ArticleDOI
26 Jan 1996-Science
TL;DR: It is shown that the class B scavenger receptor SR-BI is an HDL receptor, which mediates selective cholesterol uptake by a mechanism distinct from the classic LDL receptor pathway.
Abstract: High density lipoprotein (HDL) and low density lipoprotein (LDL) are cholesterol transport particles whose plasma concentrations are directly (LDL) and inversely (HDL) correlated with risk for atherosclerosis. LDL catabolism involves cellular uptake and degradation of the entire particle by a well-characterized receptor. HDL, in contrast, selectively delivers its cholesterol, but not protein, to cells by unknown receptors. Here it is shown that the class B scavenger receptor SR-BI is an HDL receptor. SR-BI binds HDL with high affinity, is expressed primarily in liver and nonplacental steroidogenic tissues, and mediates selective cholesterol uptake by a mechanism distinct from the classic LDL receptor pathway.

2,315 citations

Journal ArticleDOI
24 Jun 2011-Science
TL;DR: Recent mechanistic insights into nonalcoholic fatty liver disease are discussed, focusing primarily on those that have emerged from human genetic and metabolic studies.
Abstract: Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem that affects one-third of adults and an increasing number of children in developed countries. The disease begins with the aberrant accumulation of triglyceride in the liver, which in some individuals elicits an inflammatory response that can progress to cirrhosis and liver cancer. Although NAFLD is strongly associated with obesity and insulin resistance, its pathogenesis remains poorly understood, and therapeutic options are limited. Here, we discuss recent mechanistic insights into NAFLD, focusing primarily on those that have emerged from human genetic and metabolic studies.

1,831 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
TL;DR: This statement from the American Heart Association and the National Heart, Lung, and Blood Institute is intended to provide up-to-date guidance for professionals on the diagnosis and management of the metabolic syndrome in adults.
Abstract: The metabolic syndrome has received increased attention in the past few years. This statement from the American Heart Association (AHA) and the National Heart, Lung, and Blood Institute (NHLBI) is intended to provide up-to-date guidance for professionals on the diagnosis and management of the metabolic syndrome in adults. The metabolic syndrome is a constellation of interrelated risk factors of metabolic origin— metabolic risk factors —that appear to directly promote the development of atherosclerotic cardiovascular disease (ASCVD).1 Patients with the metabolic syndrome also are at increased risk for developing type 2 diabetes mellitus. Another set of conditions, the underlying risk factors , give rise to the metabolic risk factors. In the past few years, several expert groups have attempted to set forth simple diagnostic criteria to be used in clinical practice to identify patients who manifest the multiple components of the metabolic syndrome. These criteria have varied somewhat in specific elements, but in general they include a combination of both underlying and metabolic risk factors. The most widely recognized of the metabolic risk factors are atherogenic dyslipidemia, elevated blood pressure, and elevated plasma glucose. Individuals with these characteristics commonly manifest a prothrombotic state and a pro-inflammatory state as well. Atherogenic dyslipidemia consists of an aggregation of lipoprotein abnormalities including elevated serum triglyceride and apolipoprotein B (apoB), increased small LDL particles, and a reduced level of HDL cholesterol (HDL-C). The metabolic syndrome is often referred to as if it were a discrete entity with a single cause. Available data suggest that it truly is a syndrome, ie, a grouping of ASCVD risk factors, but one that probably has more than one cause. Regardless of cause, the syndrome identifies individuals at an elevated risk for ASCVD. The magnitude of the increased risk can vary according to which components of the syndrome are …

9,982 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations