scispace - formally typeset
Search or ask a question
Author

Helen J. Hathaway

Bio: Helen J. Hathaway is an academic researcher from University of New Mexico. The author has contributed to research in topics: Estrogen receptor & GPER. The author has an hindex of 23, co-authored 49 publications receiving 2820 citations. Previous affiliations of Helen J. Hathaway include University of Texas MD Anderson Cancer Center.

Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the evidence for the cellular and physiological actions of GPR30 in estrogen-dependent processes and the relationship of G PR30 with classical estrogen receptors is provided.
Abstract: Steroids play an important role in the regulation of normal physiology and the treatment of disease. Steroid receptors have classically been described as ligand-activated transcription factors mediating long-term genomic effects in hormonally regulated tissues. It is now clear that steroids also mediate rapid signaling events traditionally associated with growth factor receptors and G protein–coupled receptors. Although evidence suggests that the classical steroid receptors are capable of mediating many of these events, more recent discoveries reveal the existence of transmembrane receptors capable of responding to steroids with cellular activation. One such receptor, GPR30, is a member of the G protein–coupled receptor superfamily and mediates estrogen-dependent kinase activation as well as transcriptional responses. In this review, we provide an overview of the evidence for the cellular and physiological actions of GPR30 in estrogen-dependent processes and discuss the relationship of GPR30 with classica...

567 citations

Journal ArticleDOI
TL;DR: In vivo administration of G15 reveals that GPR30 contributes to both uterine and neurological responses initiated by estrogen, and the identification and characterization of a G-1 analog, G15, that binds to G PR30 with high affinity and acts as an antagonist of estrogen signaling through GPR28.
Abstract: Estrogen is central to many physiological processes throughout the human body. We have previously shown that the G protein-coupled receptor GPR30 (also known as GPER), in addition to classical nuclear estrogen receptors (ER and ER), activates cellular signaling pathways in response to estrogen. In order to distinguish between the actions of classical estrogen receptors and GPR30, we have previously characterized G-1 (1), a selective agonist of GPR30. To complement the pharmacological properties of G-1, we sought to identify an antagonist of GPR30 that displays similar selectivity against the classical estrogen receptors. Here we describe the identification and characterization of G15 (2), a G-1 analog that binds to GPR30 with high affinity and acts as an antagonist of estrogen signaling through GPR30. In vivo administration of G15 revealed that GPR30 contributes to both uterine and neurological responses initiated by estrogen. The identification of this antagonist will accelerate the evaluation of the roles of GPR30 in human physiology.

456 citations

Journal ArticleDOI
TL;DR: An isosteric G-1 derivative, G36, containing an isopropyl moiety in place of the ethanone moiety is synthesized, demonstrating that G36 shows decreased binding and activation of ERα, while maintaining its antagonist profile towards GPER.

256 citations

Journal ArticleDOI
TL;DR: The novel estrogen-responsive receptor GPR30 is preferentially expressed in "high risk" EOC and is associated with lower survival rates.

183 citations

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that in male mice, GPER regulates metabolic parameters associated with obesity and diabetes.
Abstract: Estrogen is an important regulator of metabolic syndrome, a collection of abnormalities including obesity, insulin resistance/glucose intolerance, hypertension, dyslipidemia, and inflammation, which together lead to increased risk of cardiovascular disease and diabetes. The role of the G protein-coupled estrogen receptor (GPER/GPR30), particularly in males, in these pathologies remains unclear. We therefore sought to determine whether loss of GPER contributes to aspects of metabolic syndrome in male mice. Although 6-month-old male and female GPER knockout (KO) mice displayed increased body weight compared with wild-type littermates, only female GPER KO mice exhibited glucose intolerance at this age. Weight gain in male GPER KO mice was associated with increases in both visceral and sc fat. GPER KO mice, however, exhibited no differences in food intake or locomotor activity. One-year-old male GPER KO mice displayed an abnormal lipid profile with higher cholesterol and triglyceride levels. Fasting blood glucose levels remained normal, whereas insulin levels were elevated. Although insulin resistance was evident in GPER KO male mice from 6 months onward, glucose intolerance was pronounced only at 18 months of age. Furthermore, by 2 years of age, a proinflammatory phenotype was evident, with increases in the proinflammatory and immunomodulatory cytokines IL-1β, IL-6, IL-12, TNFα, monocyte chemotactic protein-1, interferon γ-induced protein 10, and monokine induced by interferon gamma and a concomitant decrease in the adipose-specific cytokine adiponectin. In conclusion, our study demonstrates for the first time that in male mice, GPER regulates metabolic parameters associated with obesity and diabetes.

150 citations


Cited by
More filters
Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

19 Nov 2012

1,653 citations

Journal ArticleDOI
TL;DR: The 11th St Gallen expert consensus meeting on the primary treatment of early breast cancer in March 2009 maintained an emphasis on targeting adjuvant systemic therapies according to subgroups defined by predictive markers, acknowledging the role of risk factors with the caveat that risk per se is not a target.

1,343 citations

Journal ArticleDOI
13 Oct 1989-Science
TL;DR: This work has shown thatectins on cell surfaces mediate cell-cell interactions by combining with complementary carbohydrates on apposing cells to form lectins, which play a key role in the control of various normal and pathological processes in living organisms.
Abstract: Lectins on cell surfaces mediate cell-cell interactions by combining with complementary carbohydrates on apposing cells. They play a key role in the control of various normal and pathological processes in living organisms.

1,158 citations

Journal Article
TL;DR: In this article, Boudreau et al. proposed a method for suppressing ICE and apoptosis in Mammary Epithelial Cells by Extracellular Matrix (EMM).
Abstract: Suppression of ICE and Apoptosis in Mammary Epithelial Cells by Extracellular Matrix Nancy Boudreau,* Carolyn J. Sympson, Zena Werb, Mina J. Bissell N. Boudreau and M. J. Bissell Life Sciences Division, Lawrence Berkeley Laboratory 1 Cyclotron Road, Building 83, Berkeley, CA 94720, USA. C. J. Sympson Life Sciences Division, Lawrence Berkeley Laboratory 1 Cyclotron Road, Building 83, Berkeley, CA 94720, USA Laboratory of Radiobiology and Environmental Health University of California, San Francisco, CA 94143, USA. Z. Werb Laboratory of Radiobiology and Environmental Health University of California, San Francisco, CA 94143, USA. *To whom correspondence should be addressed. LBNL/DOE funding & contract number: DE-AC02-05CH11231 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.

1,139 citations