scispace - formally typeset
Search or ask a question
Author

Helen Sabzevari

Other affiliations: Scripps Research Institute
Bio: Helen Sabzevari is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Cytotoxic T cell & CD8. The author has an hindex of 29, co-authored 49 publications receiving 3683 citations. Previous affiliations of Helen Sabzevari include Scripps Research Institute.
Topics: Cytotoxic T cell, CD8, T cell, Interleukin 21, Antigen


Papers
More filters
Journal ArticleDOI
01 Apr 2005-Blood
TL;DR: This is the first report demonstrating that CY, in addition to decreasing cell number, inhibits the suppressive capability of T(REGs), and the relevance of the loss of suppressor functionality and the changes in gene expression are discussed.

889 citations

Journal ArticleDOI
TL;DR: IL-15 seems to contribute to enhanced immune memory by selectively propagating memory T cells and by blocking T cell death mediated by IL-2.
Abstract: A transgenic (Tg) mouse expressing human IL-15 was generated to define the role of IL-15 in the normal immune response. Overexpression of IL-15 resulted in an increase of NK, CD44hiCD8 memory T cells, and γδ T cells. Additionally, we observed the emergence of a novel type of NK-T cells with CD8αα′ expression. Due to the expansion and activation of NK cells, the IL-15Tg mouse showed enhanced innate immunity. In adaptive T cell immunity, the roles of IL-15 contrasted with those of IL-2. IL-15 inhibited IL-2-induced T cell death, which plays a role in the maintenance of peripheral self-tolerance. IL-15 thus seems to contribute to enhanced immune memory by selectively propagating memory T cells and by blocking T cell death mediated by IL-2.

406 citations

Journal Article
TL;DR: Experiments using a four-gene construct showed that TRICOM recombinants can enhance antigen-specific T-cell responses in vivo, and demonstrate for the first time the ability of vectors to introduce three costimulatory molecules into cells, thereby activating both CD4+ and CD8+ T- cell populations to levels greater than those achieved with the use of only one or two costimulation molecules.
Abstract: The activation of a T cell has been shown to require two signals via molecules present on professional antigen-presenting cells: signal 1, via a peptide/MHC complex; and signal 2, via a costimulatory molecule. Here, the role of three costimulatory molecules in the activation of T cells was examined. Poxvirus (vaccinia and avipox) vectors were used because of their ability to efficiently express multiple genes. Murine cells provided with signal 1 and infected with either recombinant vaccinia or avipox vectors containing a TRIad of COstimulatory Molecules (B7-1/ICAM-1/LFA-3, designated TRICOM) induced the activation of T cells to a far greater extent than cells infected with any one or two costimulatory molecules. Despite this T-cell "hyperstimulation" using TRICOM vectors, no evidence of apoptosis above that seen using the B7-1 vector was observed. Results using the TRICOM vectors were most dramatic under conditions of either low levels of first signal or low stimulator cell:T-cell ratios. Experiments using a four-gene construct also showed that TRICOM recombinants can enhance antigen-specific T-cell responses in vivo. These studies thus demonstrate for the first time the ability of vectors to introduce three costimulatory molecules into cells, thereby activating both CD4+ and CD8+ T-cell populations to levels greater than those achieved with the use of only one or two costimulatory molecules. This new threshold of T-cell activation has broad implications in vaccine design and development.

307 citations

Journal ArticleDOI
15 Jan 2005-Blood
TL;DR: Evidence is provided that the IL-15 trans-presentation mechanism operates in vivo to augment the tumor immune surveillance mechanism and provides the scientific basis for a novel strategy to prevent cancer development/metastasis.

254 citations

Journal ArticleDOI
TL;DR: It is shown that efficacy of the anti-TGF-beta antibody 1D11 in suppressing metastasis was dependent on a synergistic combination of effects on both the tumor parenchyma and microenvironment and the absence of a major effect of TGF- beta antagonism on any one cell compartment may be critical for a good therapeutic window and the avoidance of autoimmune complications.
Abstract: Overexpression of transforming growth factor β (TGF-β) is frequently associated with metastasis and poor prognosis, and TGF-β antagonism has been shown to prevent metastasis in preclinical models with surprisingly little toxicity. Here we have used the transplantable 4T1 model of metastatic breast cancer to address underlying mechanisms. We showed that efficacy of the anti-TGF-β antibody 1D11 in suppressing metastasis was dependent on a synergistic combination of effects on both the tumor parenchyma and microenvironment. The main outcome was a highly significant enhancement of the CD8+ T-cell mediated anti-tumor immune response, but effects on the innate immune response and on angiogenesis also contributed to efficacy. Treatment with 1D11 increased infiltration of NK cells and T cells at the metastatic site, and enhanced expression of coactivators (NKG2D) and cytotoxic effectors (perforin and granzyme B) on CD8+ T-cells. On the tumor cells, increased expression of an NKG2D ligand (Rae1γ) and of a death receptor (TNFRSF1A) contributed to enhanced immune cell-mediated recognition and lysis. The data suggest that elevated TGF-β expression in the tumor microenvironment modulates a complex web of intercellular interactions that aggregately promote metastasis and progression. TGF-β antibodies reverse this effect, and the absence of a major effect of TGF-β antagonism on any one cell compartment may be critical for a good therapeutic window and the avoidance of autoimmune complications.

214 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Results in cancer vaccine trials are considered and alternate strategies that mediate cancer regression in preclinical and clinical models are highlighted.
Abstract: Great progress has been made in the field of tumor immunology in the past decade, but optimism about the clinical application of currently available cancer vaccine approaches is based more on surrogate endpoints than on clinical tumor regression. In our cancer vaccine trials of 440 patients, the objective response rate was low (2.6%), and comparable to the results obtained by others. We consider here results in cancer vaccine trials and highlight alternate strategies that mediate cancer regression in preclinical and clinical models.

2,983 citations

Journal ArticleDOI
TL;DR: It is suggested that TGF-beta within the tumor microenvironment induces a population of TAN with a protumor phenotype, and depletion of these neutrophils significantly blunts antitumor effects of treatment and reduces CD8(+) T cell activation.

2,425 citations

Journal ArticleDOI
TL;DR: It is concluded that intraepithelial CD8+ TILs and a high CD8-/Treg ratio are associated with favorable prognosis in epithelial ovarian cancer.
Abstract: In a recent report, [Zhang et al. (2003) N. Engl. J. Med. 348, 203–213], the presence of CD3+ tumor-infiltrating lymphocytes (TILs) was found to correlate with improved survival in epithelial ovarian cancer. We performed immunohistochemical analysis for TILs and cancer testis antigens in 117 cases of epithelial ovarian cancer. The interrelationship between subpopulations of TILs and expression of cancer testis antigens was investigated, as well as between TILs and overall survival. The median follow-up of the patients was 31 months. Patients with higher frequencies of intraepithelial CD8+ T cells demonstrated improved survival compared with patients with lower frequencies [median = 55 versus 26 months; hazard ratio = 0.33; confidence interval (C.I.) = 0.18–0.60; P = 0.0003]. No association was found for CD3+ TILs or other subtypes of intraepithelial or stromal TILs. However, the subgroups with high versus low intraepithelial CD8+/CD4+ TIL ratios had median survival of 74 and 25 months, respectively (hazard ratio = 0.30; C.I. = 0.16–0.55; P = 0.0001). These results indicate that CD4+ TILs influence the beneficial effects of CD8+ TIL. This unfavorable effect of CD4+ T cells on prognosis was found to be due to CD25+forkhead box P3 (FOXP3)+ regulatory T cells (Treg; suppressor T cells), as indicated by survival of patients with high versus low CD8+/Treg ratios (median = 58 versus 23 months; hazard ratio = 0.31; C.I. = 0.17–0.58; P = 0.0002). The favorable prognostic effect of intraepithelial CD8+ TILs did not correlate with concurrent expression of NY-ESO-1 or MAGE antigens. We conclude that intraepithelial CD8+ TILs and a high CD8+/Treg ratio are associated with favorable prognosis in epithelial ovarian cancer.

2,189 citations

Journal ArticleDOI
TL;DR: The nature and characteristics of regulatory T cells in the tumour microenvironment and their potential multiple suppressive mechanisms are considered.
Abstract: Tumours express a range of antigens, including self-antigens. Regulatory T cells are crucial for maintaining T-cell tolerance to self-antigens. Regulatory T cells are thought to dampen T-cell immunity to tumour-associated antigens and to be the main obstacle tempering successful immunotherapy and active vaccination. In this Review, I consider the nature and characteristics of regulatory T cells in the tumour microenvironment and their potential multiple suppressive mechanisms. Strategies for therapeutic targeting of regulatory T cells and the effect of regulatory T cells on current immunotherapeutic and vaccine regimens are discussed.

2,015 citations

Journal ArticleDOI
TL;DR: It is proposed that future successes in the fight against cancer will rely on the development and clinical application of combined chemo- and immunotherapies.
Abstract: Accumulating evidence indicates that the innate and adaptive immune systems make a crucial contribution to the antitumour effects of conventional chemotherapy-based and radiotherapy-based cancer treatments. Moreover, the molecular and cellular bases of the immunogenicity of cell death that is induced by cytotoxic agents are being progressively unravelled, challenging the guidelines that currently govern the development of anticancer drugs. Here, we review the immunological aspects of conventional cancer treatments and propose that future successes in the fight against cancer will rely on the development and clinical application of combined chemo- and immunotherapies.

1,352 citations