scispace - formally typeset
Search or ask a question
Author

Helena C. Morais

Bio: Helena C. Morais is an academic researcher from University of Brasília. The author has contributed to research in topics: Species richness & Caterpillar. The author has an hindex of 18, co-authored 49 publications receiving 2005 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A global dataset is used to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families to ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics.
Abstract: Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.

457 citations

Journal ArticleDOI
09 Aug 2007-Nature
TL;DR: It is suggested that greater specialization in tropical faunas is the result of differences in trophic interactions; for example, there are more distinct plant secondary chemical profiles from one tree species to the next in tropical forests than in temperate forests as well as more diverse and chronic pressures from natural enemy communities.
Abstract: For numerous taxa, species richness is much higher in tropical than in temperate zone habitats. A major challenge in community ecology and evolutionary biogeography is to reveal the mechanisms underlying these differences. For herbivorous insects, one such mechanism leading to an increased number of species in a given locale could be increased ecological specialization, resulting in a greater proportion of insect species occupying narrow niches within a community. We tested this hypothesis by comparing host specialization in larval Lepidoptera (moths and butterflies) at eight different New World forest sites ranging in latitude from 15 degrees S to 55 degrees N. Here we show that larval diets of tropical Lepidoptera are more specialized than those of their temperate forest counterparts: tropical species on average feed on fewer plant species, genera and families than do temperate caterpillars. This result holds true whether calculated per lepidopteran family or for a caterpillar assemblage as a whole. As a result, there is greater turnover in caterpillar species composition (greater beta diversity) between tree species in tropical faunas than in temperate faunas. We suggest that greater specialization in tropical faunas is the result of differences in trophic interactions; for example, there are more distinct plant secondary chemical profiles from one tree species to the next in tropical forests than in temperate forests as well as more diverse and chronic pressures from natural enemy communities.

438 citations

Journal ArticleDOI
TL;DR: This work compares caterpillar-parasitoid interactions across a broad gradient of climatic variability and finds that the combined data in 15 geographically dispersed databases show a decrease in levels of parasitism as Climatic variability increases.
Abstract: Insect outbreaks are expected to increase in frequency and intensity with projected changes in global climate through direct effects of climate change on insect populations and through disruption of community interactions. Although there is much concern about mean changes in global climate, the impact of climatic variability itself on species interactions has been little explored. Here, we compare caterpillar–parasitoid interactions across a broad gradient of climatic variability and find that the combined data in 15 geographically dispersed databases show a decrease in levels of parasitism as climatic variability increases. The dominant contribution to this pattern by relatively specialized parasitoid wasps suggests that climatic variability impairs the ability of parasitoids to track host populations. Given the important role of parasitoids in regulating insect herbivore populations in natural and managed systems, we predict an increase in the frequency and intensity of herbivore outbreaks through a disruption of enemy–herbivore dynamics as climates become more variable.

299 citations

Journal ArticleDOI
TL;DR: The high richness of relatively rare species in the cerrado site poses challenges in understanding the reasons for such rarity, the organization of such assemblages, the gradient of species richness from low to high latitudes, the estimation of biodiversity, and conservation management.
Abstract: Local sampling of larval lepidopterans on Erythroxylum host plant species in tropical savanna (cerrado) revealed a high species richness with low abundance per species. Cumulative numbers of morphospecies with increasing sampling effort yielded no asymptotic level of richness in sampling periods lasting 6 mo, 7 mo, and 23 mo. Peak richness was reached at 31 species in 1992 and 19 species in 1993, on the three Erythroxylum species sampled: E. deciduum, E. suberosum, and E. tortuosum. Less than one larva was found per plant during all sampling times, with a mean of 0.28 species per plant in 1992 and 0.12 in 1993. The number of specimens of all species combined discovered per plant was very low at 0.10 per plant. Many plants remained unattacked on any sampling date with 12 percent, 8 percent, and 16 percent of plants attacked in the species listed in order above. In general, there was an increase in species found during the late dry season when new leaves were produced, but plant phenology seemed to exert only a small influence. Comparisons with temperate samples of a similar kind, in savanna vegetation at the same altitude, indicate a very different assemblage. Comparison was based on four criteria: richness was from two to over three times higher in the tropics, even though sampling had not produced an asymptotic accumulation of species; the number of morphospecies per plant individual was similar at the sites, although total richness was lower in the temperate savanna; the number of total individuals per plant was 11-fold higher in the temperate samples; and the percent of plants with larvae present was over four times higher in the temperate zone (mean of 49%) than in the cerrado (12%). The high richness of relatively rare species in the cerrado site poses challenges in understanding the reasons for such rarity, the organization of such assemblages, the gradient of species richness from low to high latitudes, the estimation of biodiversity, and conservation management.

130 citations

Journal ArticleDOI
TL;DR: Plant and leaf traits were correlated with interspecific variation in attack by herbivores and pathogens in order to account for differences among plant species, and protein availability and plant height were positive predictors of pathogen attack among plant Species, while leaf expansion rate was a significant negative predictor.
Abstract: Patterns of insect herbivore and leaf pathogen attack are described for 25 plant species (10 trees, 10 shrubs and five herbs) at a Brazilian savanna (cerrado) site. Plant and leaf traits were correlated with interspecific variation in attack by herbivores and pathogens in order to account for differences among plant species. Across all species, pathogen damage was 1.5 times higher than insect damage (17.3% vs. 6.8%, respectively). Most insect damage occurred to young leaves while they were expanding (end of the dry season). In contrast, pathogen attack was low on young expanding leaves at the end of the dry season, increased as those leaves matured in the wet season, but continued to increase through the next dry season. Protein-binding capacity was negatively associated with interspecific differences in insect damage to mature leaves. Protein availability and plant height were positive predictors of pathogen attack among plant species, while leaf expansion rate was a significant negative predictor. Interspecific differences in leaf phenology had little effect on the amount of damage caused by either insects or pathogens. However, new leaves produced during the wet season suffered less insect damage than leaves produced during the dry season, the time of greatest leaf production. Timing of young leaf production affected pathogen attack but the season of escape depended on plant species. In contrast, there was no evidence for escape in space as common species were less likely to suffer high pathogen attack than rare species. New and mature leaf toughness, and time for a leaf to reach full expansion all increased from herbs to shrub to trees, while mature leaf nitrogen decreased in that order.

116 citations


Cited by
More filters
Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: Several key areas are reviewed in which phylogenetic information helps to resolve long-standing controversies in community ecology, challenges previous assumptions, and opens new areas of investigation.
Abstract: The increasing availability of phylogenetic data, computing power and informatics tools has facilitated a rapid expansion of studies that apply phylogenetic data and methods to community ecology. Several key areas are reviewed in which phylogenetic information helps to resolve long-standing controversies in community ecology, challenges previous assumptions, and opens new areas of investigation. In particular, studies in phylogenetic community ecology have helped to reveal the multitude of processes driving community assembly and have demonstrated the importance of evolution in the assembly process. Phylogenetic approaches have also increased understanding of the consequences of community interactions for speciation, adaptation and extinction. Finally, phylogenetic community structure and composition holds promise for predicting ecosystem processes and impacts of global change. Major challenges to advancing these areas remain. In particular, determining the extent to which ecologically relevant traits are phylogenetically conserved or convergent, and over what temporal scale, is critical to understanding the causes of community phylogenetic structure and its evolutionary and ecosystem consequences. Harnessing phylogenetic information to understand and forecast changes in diversity and dynamics of communities is a critical step in managing and restoring the Earths biota in a time of rapid global change.

1,867 citations

Book
01 Jan 1998
TL;DR: The mechanisms underlying plant resistance to invading herbivores on the one side, and insect food specialization on the other, are the main subjects of this book.
Abstract: Half of all insect species are dependent on living plant tissues, consuming about 10% of plant annual production in natural habitats and an even greater percentage in agricultural systems, despite sophisticated control measures. Plants are generally remarkably well-protected against insect attack, with the result that most insects are highly specialized feeders. The mechanisms underlying plant resistance to invading herbivores on the one side, and insect food specialization on the other, are the main subjects of this book. For insects these include food-plant selection and the complex sensory processes involved, with their implications for learning and nutritional physiology, as well as the endocrinological spects of life cycle synchronization with host plant phenology. In the case of plants exposed to insect herbivores, they include the activation of defence systems in order to minimize damage, as well as the emission of chemical signals that may attract natural enemies of the invading herbivores and maybe exploited by neighbouring plants that mount defences as well.

1,857 citations

Journal ArticleDOI
TL;DR: Two major hypotheses for the origin of the latitudinal diversity gradient are reviewed, including the time and area hypothesis and the diversification rate hypothesis, which hold that tropical regions diversify faster due to higher rates of speciation, or due to lower extinction rates.
Abstract: A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.

1,435 citations

Journal ArticleDOI
TL;DR: In the last 35 years, more than 50% of the Cerrado's approximately 2 million km 2 has been transformed into pasture and agricultural lands planted in cash crops as mentioned in this paper.
Abstract: The Cerrado is one of the world's biodiversity hotspots. In the last 35 years, more than 50% of its approximately 2 million km 2 has been transformed into pasture and agricultural lands planted in cash crops. The Cerrado has the richest flora among the world's savannas (>7000 species) and high levels of endemism. Species richness of birds, fishes, reptiles, amphibians, and insects is equally high, whereas mammal diversity is relatively low. Deforestation rates have been higher in the Cerrado than in the Amazon rainforest, and conservation efforts have been modest: only 2.2% of its area is under legal protection. Numerous animal and plant species are threatened with extinction, and an estimated 20% of threatened and endemic species do not occur in protected areas. Soil erosion, the degradation of the diverse Cerrado vegetation formations, and the spread of exotic grasses are widespread and major threats. The use of fire for clearing land and to encourage new growth for pasture has also caused damage, even though the Cerrado is a fire-adapted ecosystem. Ecosystem experiments and modeling show that change in land cover is altering the hydrology and affecting carbon stocks and fluxes. Cerrado agriculture is lucrative, and agricultural expansion is expected to continue, requiring improvements in and extension of the transportation infrastructure, which will affect not only the Cerrado but also the Amazon forest. Large-scale landscape modification and threats to numerous species have led to renewed interest from various sectors in promoting the conservation of the Cerrado, particularly through strengthening and enlarging the system of protected areas and improving farming practices and thus the livelihoods of local communities.

1,297 citations