scispace - formally typeset
Search or ask a question
Author

Helena Castro

Bio: Helena Castro is an academic researcher from University of Porto. The author has contributed to research in topics: Leishmania infantum & Peroxiredoxin. The author has an hindex of 16, co-authored 31 publications receiving 783 citations. Previous affiliations of Helena Castro include Instituto de Biologia Molecular e Celular.

Papers
More filters
Journal ArticleDOI
TL;DR: Site-directed mutagenesis confirmed that C52 and C173, as in related peroxiredoxins, are involved in catalysis, and the deduced mechanism may apply to most peroxIREDoxins and complements current views of peroxirescentoxin catalysis.

117 citations

Journal ArticleDOI
TL;DR: Observations point to the existence of an elaborate peroxide metabolism in trypanosomatids, which includes the unique feature of using reducing equivalents derived from trypanothione, a dithiol found exclusively in these protozoa.
Abstract: This article provides an overview about the recent advances in the dissection of the peroxide metabolism of Trypanosomatidae. This family of protozoan organisms comprises the medically relevant parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. Over the past 10 years, three major families of peroxidases have been identified in these organisms: (a) 2-cysteine peroxiredoxins, (b) nonselenium glutathione peroxidases, and (c) ascorbate peroxidases. In trypanosomatids, these enzymes display the unique feature of using reducing equivalents derived from trypanothione, a dithiol found exclusively in these protozoa. The electron transfer between trypanothione and the peroxidases is mediated by a redox shuttle, which can either be tryparedoxin, ascorbate, or even glutathione. The preference for the intermediate molecule differs among each peroxidase and so does the specificity for the peroxide substrate. These observations, added to the fact that these peroxidases are distributed throughout different subcellular compartments, point to the existence of an elaborate peroxide metabolism in trypanosomatids. With the completion of the trypanosomatids genome, other molecules displaying peroxidase activity might be added to this list in the future.

105 citations

Journal ArticleDOI
TL;DR: It is demonstrated that in the vector-borne protozoan parasite Leishmania infantum, mitochondrial peroxiredoxin (Prx) exerts intrinsic ATP-independent chaperone activity, protecting a wide variety of different proteins against heat stress-mediated unfolding in vitro and in vivo.
Abstract: Cytosolic eukaryotic 2-Cys-peroxiredoxins have been widely reported to act as dual-function proteins, either detoxifying reactive oxygen species or acting as chaperones to prevent protein aggregation. Several stimuli, including peroxide-mediated sulfinic acid formation at the active site cysteine, have been proposed to trigger the chaperone activity. However, the mechanism underlying this activation and the extent to which the chaperone function is crucial under physiological conditions in vivo remained unknown. Here we demonstrate that in the vector-borne protozoan parasite Leishmania infantum, mitochondrial peroxiredoxin (Prx) exerts intrinsic ATP-independent chaperone activity, protecting a wide variety of different proteins against heat stress-mediated unfolding in vitro and in vivo. Activation of the chaperone function appears to be induced by temperature-mediated restructuring of the reduced decamers, promoting binding of unfolding client proteins in the center of Prx’s ringlike structure. Client proteins are maintained in a folding-competent conformation until restoration of nonstress conditions, upon which they are released and transferred to ATP-dependent chaperones for refolding. Interference with client binding impairs parasite infectivity, providing compelling evidence for the in vivo importance of Prx’s chaperone function. Our results suggest that reduced Prx provides a mitochondrial chaperone reservoir, which allows L. infantum to deal successfully with protein unfolding conditions during the transition from insect to the mammalian hosts and to generate viable parasites capable of perpetuating infection.

80 citations

Journal ArticleDOI
TL;DR: It is shown, for the first time, that these 2-Cys peroxiredoxins can be determinant for pathogenicity independently of their peroxidase activity, and the findings reported here change the paradigm which regards all trypanosomatid 2-cysteine peroxires as peroxide-eliminating devices.
Abstract: Two-cysteine peroxiredoxins are ubiquitous peroxidases that play various functions in cells. In Leishmania and related trypanosomatids, which lack catalase and selenium-glutathione peroxidases, the discovery of this family of enzymes provided the molecular basis for peroxide removal in these organisms. In this report the functional relevance of one of such enzymes, the mitochondrial 2-Cys peroxiredoxin (mTXNPx), was investigated along the Leishmania infantum life cycle. mTXNPx null mutants (mtxnpx(-)) produced by a gene replacement strategy, while indistinguishable from wild type promastigotes, were found unable to thrive in a murine model of infection. Unexpectedly, however, the avirulent phenotype of mtxnpx(-) was not due to lack of the peroxidase activity of mTXNPx as these behaved like controls when exposed to oxidants added exogenously or generated by macrophages during phagocytosis ex vivo. In line with this, mtxnpx(-) were also avirulent when inoculated into murine hosts unable to mount an effective oxidative phagocyte response (B6.p47(phox-/-) and B6.RAG2(-/-) IFN-γ(-/-) mice). Definitive conclusion that the peroxidase activity of mTXNPx is not required for parasite survival in mice was obtained by showing that a peroxidase-inactive version of this protein was competent in rescuing the non-infective phenotype of mtxnpx(-). A novel function is thus proposed for mTXNPx, that of a molecular chaperone, which may explain the impaired infectivity of the null mutants. This premise is based on the observation that the enzyme is able to suppress the thermal aggregation of citrate synthase in vitro. Also, mtxnpx(-) were more sensitive than controls to a temperature shift from 25°C to 37°C, a phenotype reminiscent of organisms lacking specific chaperone genes. Collectively, the findings reported here change the paradigm which regards all trypanosomatid 2-Cys peroxiredoxins as peroxide-eliminating devices. Moreover, they demonstrate, for the first time, that these 2-Cys peroxiredoxins can be determinant for pathogenicity independently of their peroxidase activity.

77 citations

Journal ArticleDOI
TL;DR: Ex vivo infection assays suggest that wild-type levels of LiTXN1 are required for optimal L. infantum virulence, and confirm the essentiality of Li TXN1 throughout the life cycle of the parasite, namely in the disease-causing amastigote stage.

69 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Using crystal structures, a detailed catalytic cycle has been derived for typical 2-Cys Prxs, including a model for the redox-regulated oligomeric state proposed to control enzyme activity.

2,388 citations

Journal ArticleDOI
TL;DR: This comprehensive review summarizes fundamental principles of glutathione catalysis and compares the structures and mechanisms ofglutathione-dependent enzymes, including glutathion reductase, glutaredoxins, glutATHione peroxidases, peroxiredoxinases, glyoxalases 1 and 2, glutthione transferases and MAPEG.

814 citations

Journal ArticleDOI
TL;DR: Recent evidence suggests that each host–pathogen combination evokes different solutions to the problems of parasite establishment, survival and persistence in Leishmania spp.
Abstract: Leishmania is a genus of protozoan parasites that are transmitted by the bite of phlebotomine sandflies and give rise to a range of diseases (collectively known as leishmaniases) that affect over 150 million people worldwide. Cellular immune mechanisms have a major role in the control of infections with all Leishmania spp. However, as discussed in this Review, recent evidence suggests that each host-pathogen combination evokes different solutions to the problems of parasite establishment, survival and persistence. Understanding the extent of this diversity will be increasingly important in ensuring the development of broadly applicable vaccines, drugs and immunotherapeutic interventions.

760 citations

Journal ArticleDOI
TL;DR: Protein phosphorylation and dephosphorylation play a major role in intracellular signal transduction activated by extracellular stimuli and the alteration of PKB activity is associated with several human diseases, including cancer and diabetes.

738 citations

Journal ArticleDOI
TL;DR: Mitochondria are a major source of hydrogen peroxide, and this oxidant is implicated in the damage associated with aging and a number of pathologies, and the extent of this role and the mechanisms involved are currently unclear.
Abstract: Prxs (peroxiredoxins) are a family of proteins that are extremely effective at scavenging peroxides. The Prxs exhibit a number of intriguing properties that distinguish them from conventional antioxidants, including a susceptibility to inactivation by hyperoxidation in the presence of excess peroxide and the ability to form complex oligomeric structures. These properties, combined with a high cellular abundance and reactivity with hydrogen peroxide, have led to speculation that the Prxs function as redox sensors that transmit signals as part of the cellular response to oxidative stress. Multicellular organisms express several different Prxs that can be categorized by their subcellular distribution. In mammals, Prx 3 and Prx 5 are targeted to the mitochondrial matrix. Mitochondria are a major source of hydrogen peroxide, and this oxidant is implicated in the damage associated with aging and a number of pathologies. Hydrogen peroxide can also act as a second messenger, and is linked with signalling events in mitochondria, including the induction of apoptosis. A simple kinetic competition analysis estimates that Prx 3 will be the target for up to 90% of hydrogen peroxide generated in the matrix. Therefore, mitochondrial Prxs have the potential to play a major role in mitochondrial redox signalling, but the extent of this role and the mechanisms involved are currently unclear.

441 citations