scispace - formally typeset
Search or ask a question
Author

Helmut Clemens

Bio: Helmut Clemens is an academic researcher from University of Leoben. The author has contributed to research in topics: Intermetallic & Microstructure. The author has an hindex of 50, co-authored 454 publications receiving 11033 citations. Previous affiliations of Helmut Clemens include Max Planck Society & University of Stuttgart.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an equiatomic CoCrFeMnNi high-entropy alloy (HEA), produced by arc melting and drop casting, was subjected to severe plastic deformation (SPD) using high pressure torsion.

887 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the correlation between microstructure and mechanical as well as tribological properties of hard ceramic coatings and demonstrate that nanostructure dependent hardness increase (compared to hardness of the bulk counterparts) sustains higher annealing temperatures than hardness increase due to an increased density of point-and/or line-defects.

820 citations

Journal ArticleDOI
TL;DR: In this article, a general survey of engineering γ-TiAl based alloys is given, but concentrates on β-solidifying alloys which show excellent hot-workability and balanced mechanical properties when subjected to adapted heat treatments.
Abstract: After almost three decades of intensive fundamental research and development activities, intermetallic titanium aluminides based on the ordered γ-TiAl phase have found applications in automotive and aircraft engine industry. The advantages of this class of innovative high-temperature materials are their low density and their good strength and creep properties up to 750 °C as well as their good oxidation and burn resistance. Advanced TiAl alloys are complex multi-phase alloys which can be processed by ingot or powder metallurgy as well as precision casting methods. Each process leads to specific microstructures which can be altered and optimized by thermo-mechanical processing and/or subsequent heat treatments. The background of these heat treatments is at least twofold, i.e., concurrent increase of ductility at room temperature and creep strength at elevated temperature. This review gives a general survey of engineering γ-TiAl based alloys, but concentrates on β-solidifying γ-TiAl based alloys which show excellent hot-workability and balanced mechanical properties when subjected to adapted heat treatments. The content of this paper comprises alloy design strategies, progress in processing, evolution of microstructure, mechanical properties as well as application-oriented aspects, but also shows how sophisticated ex situ and in situ methods can be employed to establish phase diagrams and to investigate the evolution of the micro- and nanostructure during hot-working and subsequent heat treatments.

791 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a high-temperature materials for the next generation of aircraft engines, space vehicles, and automotive engines, and showed that intermetallic γ-TiAl-based alloys show a great potential to fulfill these demands.
Abstract: Development and processing of high-temperature materials is the key to technological advancements in engineering areas where materials have to meet extreme requirements. Examples for such areas are the aerospace and spacecraft industry or the automotive industry. New structural materials have to be “stronger, stiffer, hotter, and lighter” to withstand the extremely demanding conditions in the next generation of aircraft engines, space vehicles, and automotive engines. Intermetallic γ-TiAl-based alloys show a great potential to fulfill these demands.

515 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: High entropy alloys (HEAs) are barely 12 years old as discussed by the authors, and the field has stimulated new ideas and inspired the exploration of the vast composition space offered by multi-principal element alloys.

4,693 citations

Journal ArticleDOI
01 Oct 1971-Nature
TL;DR: Lipson and Steeple as mentioned in this paper interpreted X-ray powder diffraction patterns and found that powder-diffraction patterns can be represented by a set of 3-dimensional planes.
Abstract: Interpretation of X-ray Powder Diffraction Patterns . By H. Lipson and H. Steeple. Pp. viii + 335 + 3 plates. (Mac-millan: London; St Martins Press: New York, May 1970.) £4.

1,867 citations

Journal ArticleDOI
TL;DR: This Review discusses model high-entropy alloys with interesting properties, the physical mechanisms responsible for their behaviour and fruitful ways to probe and discover new materials in the vast compositional space that remains to be explored.
Abstract: Alloying has long been used to confer desirable properties to materials. Typically, it involves the addition of relatively small amounts of secondary elements to a primary element. For the past decade and a half, however, a new alloying strategy that involves the combination of multiple principal elements in high concentrations to create new materials called high-entropy alloys has been in vogue. The multi-dimensional compositional space that can be tackled with this approach is practically limitless, and only tiny regions have been investigated so far. Nevertheless, a few high-entropy alloys have already been shown to possess exceptional properties, exceeding those of conventional alloys, and other outstanding high-entropy alloys are likely to be discovered in the future. Here, we review recent progress in understanding the salient features of high-entropy alloys. Model alloys whose behaviour has been carefully investigated are highlighted and their fundamental properties and underlying elementary mechanisms discussed. We also address the vast compositional space that remains to be explored and outline fruitful ways to identify regions within this space where high-entropy alloys with potentially interesting properties may be lurking. High-entropy alloys have greatly expanded the compositional space for alloy design. In this Review, the authors discuss model high-entropy alloys with interesting properties, the physical mechanisms responsible for their behaviour and fruitful ways to probe and discover new materials in the vast compositional space that remains to be explored.

1,798 citations

Journal ArticleDOI
Abstract: This article presents an overview of the developments in stainless steels made since the 1990s. Some of the new applications that involve the use of stainless steel are also introduced. A brief introduction to the various classes of stainless steels, their precipitate phases and the status quo of their production around the globe is given first. The advances in a variety of subject areas that have been made recently will then be presented. These recent advances include (1) new findings on the various precipitate phases (the new J phase, new orientation relationships, new phase diagram for the Fe–Cr system, etc.); (2) new suggestions for the prevention/mitigation of the different problems and new methods for their detection/measurement and (3) new techniques for surface/bulk property enhancement (such as laser shot peening, grain boundary engineering and grain refinement). Recent developments in topics like phase prediction, stacking fault energy, superplasticity, metadynamic recrystallisation and the calculation of mechanical properties are introduced, too. In the end of this article, several new applications that involve the use of stainless steels are presented. Some of these are the use of austenitic stainless steels for signature authentication (magnetic recording), the utilisation of the cryogenic magnetic transition of the sigma phase for hot spot detection (the Sigmaplugs), the new Pt-enhanced radiopaque stainless steel (PERSS) coronary stents and stainless steel stents that may be used for magnetic drug targeting. Besides recent developments in conventional stainless steels, those in the high-nitrogen, low-Ni (or Ni-free) varieties are also introduced. These recent developments include new methods for attaining very high nitrogen contents, new guidelines for alloy design, the merits/demerits associated with high nitrogen contents, etc.

1,668 citations

Journal ArticleDOI
TL;DR: In this paper, a review of continuum-based variational formulations for describing the elastic-plastic deformation of anisotropic heterogeneous crystalline matter is presented and compared with experiments.

1,573 citations