scispace - formally typeset
Search or ask a question
Author

Helmut Eckhardt

Other affiliations: Honeywell
Bio: Helmut Eckhardt is an academic researcher from AlliedSignal. The author has contributed to research in topics: Conductive polymer & Polyacetylene. The author has an hindex of 26, co-authored 65 publications receiving 2933 citations. Previous affiliations of Helmut Eckhardt include Honeywell.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new low energy phase of carbon, called graphyne, is predicted to have a crystalline state formation energy of 12.4 kcal/mol carbon, which appears to be much lower than for any carbon phase which contains acetylenic groups as a major structural component.
Abstract: Structure, thermodynamics, and electronic properties are predicted for a new low energy phase of carbon which contains planar sheets equally occupied by sp2 and sp carbon atoms. The isolated planar sheets have the same planar symmetry as do the layers in graphite (p6m) and can be formally viewed as resulting from the replacement of one‐third of the carbon–carbon bonds in graphite by –C 3/4 C– linkages. This material, called graphyne, is predicted to have a crystalline state formation energy of 12.4 kcal/mol carbon, which appears to be much lower than for any carbon phase which contains acetylenic groups as a major structural component. Based on the major structural reorganization required for graphitization and the observed high temperature stability of known model compounds, high temperature stability is predicted for graphyne. While graphyne will have similar mechanical properties as graphite, it is predicted to be a large bandgap semiconductor (Eg=1.2 eV) rather than a metal or semimetal. Based on this...

1,268 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic and electrochemical properties of poly(p−phenylene vinylene), poly(thienylene vinylenes), and their derivatives with electron donating moieties such as methyl, methoxy, and ethoxy are studied using the newly developed electrochemical potential spectroscopy (ECPS) and optical spectrum analysis.
Abstract: The electronic and electrochemical properties of poly(p‐phenylene vinylene), poly(thienylene vinylene), and their derivatives with electron donating moieties such as methyl, methoxy, and ethoxy are studied using the newly developed electrochemical potential spectroscopy (ECPS) and optical spectroscopy. It is shown that electrochemically derived band gaps agree well with band gap values obtained from optical measurements. Substitution with electron donating groups substantially lowers the ionization potentials and band gaps. A similar effect can be attributed to the incorporation of a vinylene linkage between rings of the polymer backbone. Our results imply that through a proper choice of substituents and backbone structure one can adjust the electrochemical potentials over a wide range as well as red shift the absorption edge of these polymers. In the case of the alkoxythienylene vinylenes the absorption edge is shifted through the visible range of the spectrum into the near infrared (NIR) yielding polyme...

237 citations

Journal ArticleDOI
TL;DR: Paraphenylene oligomers (biphenyl, pterphenyl, polyphenyl polysilicon, p quaterphenyl and p quinquephenyl) form electrically conducting charge transfer complexes with AsF5 and have been measured with conductivities as high as 50 S/cm.
Abstract: Paraphenylene oligomers (biphenyl, p‐terphenyl, p‐quaterphenyl, p‐quinquephenyl, p‐sexiphenyl) form electrically conducting complexes with AsF5. Prolonged exposure to AsF5 causes a polymerization of these p‐phenylene oligomers to give highly conducting charge‐transfer complexes of poly(p‐phenylene). Conductivities as high as 50 S/cm have been measured. Powders, thin films, and single crystals of p‐phenylene oligomers have been reacted with AsF5. The undoped oligomers and the doped, compensated, and annealed products have been investigated by means of x‐ray diffraction, and UV‐visible and IR transmission spectroscopy. The x‐ray diffraction studies give evidence for a change in lattice spacings to those characteristic of the crystalline polymer. The spectroscopic measurements during AsF5 doping reveal shifts in absorption bands in the UV and the IR to those characteristic of poly(p‐phenylene). Paraoligophenylenes have also been reacted with elemental potassium in THF solution with trace amounts of naphthalene. Highly conducting complexes were formed (0.5 S/cm for sexiphenyl) but there is no evidence for further polymerization.

186 citations

Journal ArticleDOI
TL;DR: In this paper, strong electron acceptors (AsF5, SbF5) are applied to poly(thio 2,8,dibenzothiophenediyl) to form conducting complexes with p-type electronic conductivities up to 3 S/cm.
Abstract: Poly(p‐phenylene) sulfide, poly(m‐phenylene) sulfide, and the newly synthesized polymer poly(thio‐2,8‐dibenzothiophenediyl) have been treated with strong electron acceptors (AsF5, SbF5) to form conducting complexes with p‐type electronic conductivities up to 3 S/cm. Near IR to UV absorption spectra and temperature‐dependent conductivity measurements suggest a localization of charge carriers even at high doping levels. Elemental analysis and IR spectroscopy demonstrate that heavy exposure to AsF5 causes substantial changes in the backbone structure of these polymers. The dopant appears to predominantly induce the formation of carbon–carbon bonds bridging the sulfur linkages to form thiophene rings. This chemical modification enhances the conductivity of the complex and, in the case of poly(m‐phenylene), is shown to be an actual prerequisite for achieving high conductivity.

161 citations

Patent
12 May 1989
TL;DR: In this article, a dual-pane thermal window unit consisting of two nonintersecting or, preferably, substantially parallel, spaced window panes, mounted in a window frame, a first of the panes having affixed thereto a first wall of an electro-optical liquid crystal cell providing a selected light transmittance, and a second of said panes delimiting, with a second wall of said cell, a space providing a thermal break.
Abstract: A dual-pane thermal window unit comprises two non-intersecting or, preferably, substantially parallel, spaced window panes, mounted in a window frame, a first of the panes having affixed thereto a first wall of an electro-optical liquid crystal cell providing a selected light transmittance, and a second of said panes delimiting, with a second wall of said cell, a space providing a thermal break. Each of the first and second walls comprises an electrically conductive film composed of plastic and having sufficient supporting strength to maintain the structural integrity of the cell. The window is light weight, economical to manufacture and efficient and reliable in operation.

143 citations


Cited by
More filters
Journal ArticleDOI
21 May 1999-Science
TL;DR: Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology.
Abstract: Electromechanical actuators based on sheets of single-walled carbon nanotubes were shown to generate higher stresses than natural muscle and higher strains than high-modulus ferroelectrics. Like natural muscles, the macroscopic actuators are assemblies of billions of individual nanoscale actuators. The actuation mechanism (quantum chemical-based expansion due to electrochemical double-layer charging) does not require ion intercalation, which limits the life and rate of faradaic conducting polymer actuators. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology.

2,334 citations

Journal ArticleDOI
TL;DR: The goal of the present article is to provide a survey of electroactive polymers in view of potential applications in rechargeable batteries, and reviews the preparative methods and the electrochemical performance of polymers as rechargeable battery electrodes.
Abstract: Electrochemical energy storage systems (batteries) have a tremendous role in technical applications In this review the authors examine the prospects of electroactive polymers in view of the properties required for such batteries Conducting organic polymers are considered here in the light of their rugged chemical environment: organic solvents, acids, and alkalis The goal of the present article is to provide, first of all in tabular form, a survey of electroactive polymers in view of potential applications in rechargeable batteries It reviews the preparative methods and the electrochemical performance of polymers as rechargeable battery electrodes The theoretical values of specific charge of the polymers are comparable to those of metal oxide electrodes, but are not as high as those of most of the metal electrodes normally used in batteries Therefore, it is an advantage in conventional battery designs to use the conducting polymer as a positive electrode material in combination with a negative electrode such as Li, Na, Mg, Zn, MeH{sub x}, etc 504 refs

1,481 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the characteristics of light-emitting diodes based upon MEH-PPV are determined by tunneling both the holes and the electrons through interface barriers caused by the band offset between the polymer and the electrodes.
Abstract: In this paper it is demonstrated that the characteristics of light‐emitting diodes based upon MEH‐PPV [more fully known as poly(2‐methoxy,5‐(2’‐ethyl‐hexoxy)‐1,4‐phenylene‐ vinylene)] are determined by tunneling of both the holes and the electrons through interface barriers caused by the band offset between the polymer and the electrodes. It is shown that manipulating these offsets can control the useful operating voltage of the device as well as its efficiency. A model is developed that clearly explains the device characteristics of a wide range of diodes based upon MEH‐PPV. The turn‐on voltage for an ideal device is shown to be equal to the band gap, i.e., 2.1 eV for MEH‐PPV, and is slightly lower at 1.8 eV for an indium‐tin oxide/MEH‐PPV/Ca device. If there is a significant difference in the barrier height, the smaller of the two barriers controls the I–V characteristics, while the larger barrier determines the device efficiency. In indium‐tin‐oxide/MEH‐PPV/Ca devices, the barrier to hole injection is ...

1,435 citations

Journal ArticleDOI
TL;DR: The fundamental relationships between electronic structure, adsorption energy, and apparent activity for a wide variety of 2D electrocatalysts are described with the goal of providing a better understanding of these emerging nanomaterials at the atomic level.
Abstract: Over the past few decades, the design and development of advanced electrocatalysts for efficient energy conversion technologies have been subjects of extensive study. With the discovery of graphene, two-dimensional (2D) nanomaterials have emerged as some of the most promising candidates for heterogeneous electrocatalysts due to their unique physical, chemical, and electronic properties. Here, we review 2D-nanomaterial-based electrocatalysts for selected electrocatalytic processes. We first discuss the unique advances in 2D electrocatalysts based on different compositions and functions followed by specific design principles. Following this overview, we discuss various 2D electrocatalysts for electrocatalytic processes involved in the water cycle, carbon cycle, and nitrogen cycle from their fundamental conception to their functional application. We place a significant emphasis on different engineering strategies for 2D nanomaterials and the influence these strategies have on intrinsic material performance, ...

1,363 citations