scispace - formally typeset
Search or ask a question
Author

Helmut Ermert

Other affiliations: Siemens, Ruhr University Bochum
Bio: Helmut Ermert is an academic researcher from University of Erlangen-Nuremberg. The author has contributed to research in topics: Ultrasonic sensor & Imaging phantom. The author has an hindex of 40, co-authored 371 publications receiving 5909 citations. Previous affiliations of Helmut Ermert include Siemens & Ruhr University Bochum.


Papers
More filters
Journal ArticleDOI
TL;DR: An extension of the algorithm is presented that iteratively takes into account the time shifts of the signals to overcome the problems of aliasing and accuracy in the estimation of the phase shift and it can be proven that it is equivalent to the search of the maximum of the correlation function.
Abstract: In ultrasonic elastography, the exact estimation of temporal displacements between two signals is the key to estimating strain. An algorithm was previously proposed that estimates these displacements using phase differences of the corresponding base-band signals. A major advantage of these algorithms compared with correlation techniques is the computational efficiency. In this paper, an extension of the algorithm is presented that iteratively takes into account the time shifts of the signals to overcome the problems of aliasing and accuracy in the estimation of the phase shift. Thus, it can be proven that the algorithm is equivalent to the search of the maximum of the correlation function. Furthermore, a robust logarithmic compression is proposed that only compresses the envelope of the signal. This compression does not introduce systematic errors and significantly reduces decorrelation noise. The resulting algorithm is a computationally simple and very fast alternative to conventional correlation techniques, and the accuracy of strain images is improved.

337 citations

Journal ArticleDOI
TL;DR: The results show that it is possible to detect prostate cancer with a high degree of sensitivity using real-time elastography in conjunction with conventional diagnostic methods for guided prostate biopsies.

271 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the synthetic aperture concept and B/D-scan concept to account for the short depth of the focal area and applied different transmitter signals for each depth to avoid the inhomogeneity of the images, which are pseudoinversely prefiltered according to the transfer function of the tissue.
Abstract: A major design problem concerning high-frequency broad-band ultrasound imaging systems is caused by the strong dispersive attenuation of the tissue, which gives rise to images with inhomogeneous resolution and poor signal to noise ratio (SNR). To address the noise problem, strongly focused transducers with high energy density in a narrow focal region are utilized, which also provide more isotropic images due to improved lateral resolution. To account for the short depth of the focal area two suitable imaging conceptions are used: 1) synthetic aperture concept and 2) B/D-scan concept. To avoid the inhomogeneity of the images, different transmitter signals for each depth are applied, which are pseudoinversely prefiltered according to the transfer function of the tissue. To gain signal energy required for inverse filtering, a pulse compression technique with nonlinearly frequency modulated chirp signals is utilized. These procedures have been implemented in an ultrasound imaging system, which has been developed in the authors' laboratory for eye and skin examinations, It can be used with transducers in a frequency range from 20 to 250 MHz.

258 citations

Journal ArticleDOI
TL;DR: A freehand method for ultrasound elastography, which can be applied during a routine sonographic examination with off-line calculation of strain images (elastograms), and a freehand applicator, which guarantees a homogeneous axial compression regardless of the experience of the examiner is developed.
Abstract: We developed a freehand method for ultrasound elastography, which can be applied during a routine sonographic examination with off-line calculation of strain images (elastograms). Forty-eight patients with 53 breast lesions were examined and, after biopsy or operation, histologic reports were available for all lesions. The correlation coefficient of time delay estimates was used as a quality criterion for the subsequent calculation of elastograms. Beyond the qualitative evaluation of elastograms, we suggested a semiquantitative approach. For that purpose, the elastogram of each lesion was normalized to an overall strain of 1% (i.e., the average strain in the image was set to 1%). After normalization, we determined mean strain values inside and outside of each lesion, respectively. Defining solid lesions as benign and malignant lesions except for fibrous mastopathy, we found significant difference in strain between solid lesions and their surrounding tissue. However, that result must not be misunderstood to suggest that it was possible to distinguish benign from malignant lesions in general. Still, we address the potential of ultrasound elastography to improve the detection and localization of breast lesions as well as their differential diagnosis. Besides, we developed a freehand applicator for further studies, which guarantees a homogeneous axial compression regardless of the experience of the examiner.

209 citations

Journal ArticleDOI
TL;DR: An ultrasound synthetic aperture imaging method based on a monostatic approach was studied experimentally in this paper, where complex object data were recorded coherently in a 2D hologram using a 3.5 MHz single transducer with a fairly wide-angle beam.
Abstract: An ultrasound synthetic aperture imaging method based on a monostatic approach was studied experimentally. The proposed synthetic aperture method offers good dynamical resolution along with fast numerical reconstruction. In this study complex object data were recorded coherently in a two-dimensional hologram using a 3.5 MHz single transducer with a fairly wide-angle beam. Image reconstruction which applies the wavefront backward propagation method and the near-field curvature compensation was performed numerically in a microcomputer using the spatial frequency domain. This approach allows an efficient use of the FFT-algorithms. Because of the simple and fast scanning scheme and the efficient reconstruction algorithms the method can be made real-time. The image quality of the proposed method was studied by evaluating the spatial and dynamical resolution in a waterbath and in a typical tissue-mimicking phantom. The lateral as well as the range resolution (-6 dB) were approximately 1 mm in the depth range of 30-100 mm. The dynamical resolution could be improved considerably when the beam width was made narrower. Although it resulted in a slightly reduced spatial resolution this compromise has to be done for better resolution of low-contrast targets such as cysts. The study showed that cysts as small as 2 mm by diameter could be resolved. >

177 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper puts forward two useful methods for self-adaptation of the mutation distribution - the concepts of derandomization and cumulation and reveals local and global search properties of the evolution strategy with and without covariance matrix adaptation.
Abstract: This paper puts forward two useful methods for self-adaptation of the mutation distribution - the concepts of derandomization and cumulation. Principle shortcomings of the concept of mutative strategy parameter control and two levels of derandomization are reviewed. Basic demands on the self-adaptation of arbitrary (normal) mutation distributions are developed. Applying arbitrary, normal mutation distributions is equivalent to applying a general, linear problem encoding. The underlying objective of mutative strategy parameter control is roughly to favor previously selected mutation steps in the future. If this objective is pursued rigorously, a completely derandomized self-adaptation scheme results, which adapts arbitrary normal mutation distributions. This scheme, called covariance matrix adaptation (CMA), meets the previously stated demands. It can still be considerably improved by cumulation - utilizing an evolution path rather than single search steps. Simulations on various test functions reveal local and global search properties of the evolution strategy with and without covariance matrix adaptation. Their performances are comparable only on perfectly scaled functions. On badly scaled, non-separable functions usually a speed up factor of several orders of magnitude is observed. On moderately mis-scaled functions a speed up factor of three to ten can be expected.

3,752 citations

Journal ArticleDOI
TL;DR: It is found that tumors are rigid because they have a stiff stroma and elevated Rho-dependent cytoskeletal tension that drives focal adhesions, disrupts adherens junctions, perturbs tissue polarity, enhances growth, and hinders lumen formation.

3,553 citations

Journal ArticleDOI
25 Nov 2009-Cell
TL;DR: Reduction of lysyl oxidase-mediated collagen crosslinking prevented MMTV-Neu-induced fibrosis, decreased focal adhesions and PI3K activity, impeded malignancy, and lowered tumor incidence, and data show how collagenCrosslinking can modulate tissue fibrosis and stiffness to force focal adhesion, growth factor signaling and breast malignancies.

3,396 citations

Journal ArticleDOI
TL;DR: For assessing breast lesions, US elastography with the proposed imaging classification, which was simple compared with that of the Breast Imaging Recording and Data System classification, had almost the same diagnostic performance as conventional US.
Abstract: Purpose: To evaluate the diagnostic performance of real-time freehand elastography by using the extended combined autocorrelation method (CAM) to differentiate benign from malignant breast lesions, with pathologic diagnosis as the reference standard. Materials and Methods: This study was approved by the University of Tsukuba Human Subjects Institutional Review Board; all patients gave informed consent. Conventional ultrasonography (US) and real-time US elastography with CAM were performed in 111 women (mean age, 49.4 years; age range, 27–91 years) who had breast lesions (59 benign, 52 malignant). Elasticity images were assigned an elasticity score according to the degree and distribution of strain induced by light compression. The area under the curve and cutoff point, both of which were obtained by using a receiver operating characteristic curve analysis, were used to assess diagnostic performance. Mean scores were examined by using a Student t test. Sensitivity, specificity, and accuracy were compared b...

1,534 citations

Journal Article
TL;DR: In this article, optical coherence tomography is used for high-resolution, noninvasive imaging of the human retina, including the macula and optic nerve head in normal human subjects.
Abstract: Objective: To demonstrate optical coherence tomography for high-resolution, noninvasive imaging of the human retina. Optical coherence tomography is a new imaging technique analogous to ultrasound B scan that can provide cross-sectional images of the retina with micrometer-scale resolution. Design: Survey optical coherence tomographic examination of the retina, including the macula and optic nerve head in normal human subjects. Settings Research laboratory. Participants: Convenience sample of normal human subjects. Main Outcome Measures: Correlation of optical coherence retinal tomographs with known normal retinal anatomy. Results: Optical coherence tomographs can discriminate the cross-sectional morphologic features of the fovea and optic disc, the layered structure of the retina, and normal anatomic variations in retinal and retinal nerve fiber layer thicknesses with 10- μm depth resolution. Conclusion: Optical coherence tomography is a potentially useful technique for high depth resolution, cross-sectional examination of the fundus.

1,409 citations