scispace - formally typeset
Search or ask a question
Author

Helmut Geist

Bio: Helmut Geist is an academic researcher from Catholic University of Leuven. The author has contributed to research in topics: Land use & Land cover. The author has an hindex of 19, co-authored 28 publications receiving 13733 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors track some of the major myths on driving forces of land cover change and propose alternative pathways of change that are better supported by case study evidence, concluding that neither population nor poverty alone constitute the sole and major underlying causes of land-cover change worldwide.
Abstract: Common understanding of the causes of land-use and land-cover change is dominated by simplifications which, in turn, underlie many environment-development policies. This article tracks some of the major myths on driving forces of land-cover change and proposes alternative pathways of change that are better supported by case study evidence. Cases reviewed support the conclusion that neither population nor poverty alone constitute the sole and major underlying causes of land-cover change worldwide. Rather, peoples’ responses to economic opportunities, as mediated by institutional factors, drive land-cover changes. Opportunities and

3,330 citations

Journal ArticleDOI
TL;DR: Tropical deforestation is driven by identifiable regional patterns of causal factor synergies, of which the most prominent are economic factors, institutions, national policies, and remote influences driving agricultural expansion, wood extraction, and infrastructure extension (at the proximate level).
Abstract: Articles O ne of the primary causes of global environmental change is tropical deforestation, but the question of what factors drive deforestation remains largely unanswered (NRC 1999). Various hypotheses have produced rich arguments , but empirical evidence on the causes of deforestation continues to be largely based on cross-national statistical In some cases, these analyses are based on debatable data on rates of forest cover change (Palo 1999). The two major, mutually exclusive—and still unsatisfactory—explanations for tropical deforestation are single-factor causation and irre-ducible complexity. On the one hand, proponents of single-factor causation suggest various primary causes, such as shift-On the other hand, correlations between deforestation and multiple causative factors are many and varied , revealing no distinct pattern In addition to chronicling these attempts to identify general causes of deforestation through global-scale statistical analyses, the literature is rich in local-scale case studies investigating the causes and processes of forest cover change in specific localities. Our aim with this study is to generate from local-scale case studies a general understanding of the prox-imate causes and underlying driving forces of tropical deforestation while preserving the descriptive richness of these studies. Proximate causes are human activities or immediate actions at the local level, such as agricultural expansion, that originate from intended land use and directly impact forest cover. Underlying driving forces are fundamental social processes, such as human population dynamics or agricultural policies, that underpin the proximate causes and either operate at the local level or have an indirect impact from the national or global level. We analyzed the frequency of proximate causes and underlying driving forces of deforestation, including their interactions , as reported in 152 subnational case studies. We show that tropical deforestation is driven by identifiable regional patterns of causal factor synergies, of which the most prominent are economic factors, institutions, national policies, and remote influences (at the underlying level) driving agricultural expansion, wood extraction, and infrastructure extension (at the proximate level). Our findings reveal that prior stud-Helmut Geist (e-mail: geist@geog.ucl.ac.be) is a postdoctoral researcher (geography) in the field of human drivers of global environmental change and executive director of the Land Use and Cover Change (LUCC) core project of the International Geosphere-Biosphere Eric Lambin is a professor of geography with research interests in remote sensing and human ecology applied to studies of deforestation, desertification, and bio-mass burning in tropical regions. He is the chair of the IGBP and IHDP …

2,919 citations

Journal ArticleDOI
28 Nov 2003
TL;DR: In this article, the authors highlight the complexity of land-use/cover change and propose a framework for a more general understanding of the issue, with emphasis on tropical regions, and argue that a systematic analysis of local-scale land use change studies, conducted over a range of timescales, helps to uncover general principles that provide an explanation and prediction of new land use changes.
Abstract: We highlight the complexity of land-use/cover change and propose a framework for a more general understanding of the issue, with emphasis on tropical regions. The review summarizes recent estimates on changes in cropland, agricultural intensification, tropical deforestation, pasture expansion, and urbanization and identifies the still unmeasured land-cover changes. Climate-driven land-cover modifications interact with land-use changes. Land-use change is driven by synergetic factor combinations of resource scarcity leading to an increase in the pressure of production on resources, changing opportunities created by markets, outside policy intervention, loss of adaptive capacity, and changes in social organization and attitudes. The changes in ecosystem goods and services that result from land-use change feed back on the drivers of land-use change. A restricted set of dominant pathways of land-use change is identified. Land-use change can be understood using the concepts of complex adaptive systems and transitions. Integrated, place-based research on land-use/land-cover change requires a combination of the agent-based systems and narrative perspectives of understanding. We argue in this paper that a systematic analysis of local-scale land-use change studies, conducted over a range of timescales, helps to uncover general principles that provide an explanation and prediction of new land-use changes.

2,491 citations

Book
01 Jan 2010
TL;DR: In this paper, the authors investigate the causes and trajectories of land-use/cover change and the impacts of land cover change on the future of land in a global scale.
Abstract: Introduction: Local Processes with Global Impacts.- Global Land-Cover Change: Recent Progress, Remaining Challenges.- Causes and Trajectories of Land-Use/Cover Change.- Multiple Impacts of Land-Use/Cover Change.- Modeling Land-Use and Land-Cover Change.- Searching for the Future of Land: Scenarios from the Local to Global Scale.- Linking Land-Change Science and Policy: Current Lessons and Future Integration.- Conclusion.

887 citations


Cited by
More filters
Journal ArticleDOI
15 Nov 2013-Science
TL;DR: Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally, and boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms.
Abstract: Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.

7,890 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore the social dimension that enables adaptive ecosystem-based management, focusing on experiences of adaptive governance of social-ecological systems during periods of abrupt change and investigates social sources of renewal and reorganization.
Abstract: ▪ Abstract We explore the social dimension that enables adaptive ecosystem-based management. The review concentrates on experiences of adaptive governance of social-ecological systems during periods of abrupt change (crisis) and investigates social sources of renewal and reorganization. Such governance connects individuals, organizations, agencies, and institutions at multiple organizational levels. Key persons provide leadership, trust, vision, meaning, and they help transform management organizations toward a learning environment. Adaptive governance systems often self-organize as social networks with teams and actor groups that draw on various knowledge systems and experiences for the development of a common understanding and policies. The emergence of “bridging organizations” seem to lower the costs of collaboration and conflict resolution, and enabling legislation and governmental policies can support self-organization while framing creativity for adaptive comanagement efforts. A resilient social-eco...

4,495 citations

Journal ArticleDOI
TL;DR: In this article, the authors track some of the major myths on driving forces of land cover change and propose alternative pathways of change that are better supported by case study evidence, concluding that neither population nor poverty alone constitute the sole and major underlying causes of land-cover change worldwide.
Abstract: Common understanding of the causes of land-use and land-cover change is dominated by simplifications which, in turn, underlie many environment-development policies. This article tracks some of the major myths on driving forces of land-cover change and proposes alternative pathways of change that are better supported by case study evidence. Cases reviewed support the conclusion that neither population nor poverty alone constitute the sole and major underlying causes of land-cover change worldwide. Rather, peoples’ responses to economic opportunities, as mediated by institutional factors, drive land-cover changes. Opportunities and

3,330 citations

Journal ArticleDOI
TL;DR: Tropical deforestation is driven by identifiable regional patterns of causal factor synergies, of which the most prominent are economic factors, institutions, national policies, and remote influences driving agricultural expansion, wood extraction, and infrastructure extension (at the proximate level).
Abstract: Articles O ne of the primary causes of global environmental change is tropical deforestation, but the question of what factors drive deforestation remains largely unanswered (NRC 1999). Various hypotheses have produced rich arguments , but empirical evidence on the causes of deforestation continues to be largely based on cross-national statistical In some cases, these analyses are based on debatable data on rates of forest cover change (Palo 1999). The two major, mutually exclusive—and still unsatisfactory—explanations for tropical deforestation are single-factor causation and irre-ducible complexity. On the one hand, proponents of single-factor causation suggest various primary causes, such as shift-On the other hand, correlations between deforestation and multiple causative factors are many and varied , revealing no distinct pattern In addition to chronicling these attempts to identify general causes of deforestation through global-scale statistical analyses, the literature is rich in local-scale case studies investigating the causes and processes of forest cover change in specific localities. Our aim with this study is to generate from local-scale case studies a general understanding of the prox-imate causes and underlying driving forces of tropical deforestation while preserving the descriptive richness of these studies. Proximate causes are human activities or immediate actions at the local level, such as agricultural expansion, that originate from intended land use and directly impact forest cover. Underlying driving forces are fundamental social processes, such as human population dynamics or agricultural policies, that underpin the proximate causes and either operate at the local level or have an indirect impact from the national or global level. We analyzed the frequency of proximate causes and underlying driving forces of deforestation, including their interactions , as reported in 152 subnational case studies. We show that tropical deforestation is driven by identifiable regional patterns of causal factor synergies, of which the most prominent are economic factors, institutions, national policies, and remote influences (at the underlying level) driving agricultural expansion, wood extraction, and infrastructure extension (at the proximate level). Our findings reveal that prior stud-Helmut Geist (e-mail: geist@geog.ucl.ac.be) is a postdoctoral researcher (geography) in the field of human drivers of global environmental change and executive director of the Land Use and Cover Change (LUCC) core project of the International Geosphere-Biosphere Eric Lambin is a professor of geography with research interests in remote sensing and human ecology applied to studies of deforestation, desertification, and bio-mass burning in tropical regions. He is the chair of the IGBP and IHDP …

2,919 citations

Journal ArticleDOI
TL;DR: This work uses atmospheric carbon dioxide concentration as a single, simple indicator to track the progression of the Anthropocene, the current epoch in which humans and the authors' societies have become a global geophysical force.
Abstract: We explore the development of the Anthropocene, the current epoch in which humans and our societies have become a global geophysical force. The Anthropocene began around 1800 with the onset of industrialization, the central feature of which was the enormous expansion in the use of fossil fuels. We use atmospheric carbon dioxide concentration as a single, simple indicator to track the progression of the Anthropocene. From a preindustrial value of 270-275 ppm, atmospheric carbon dioxide had risen to about 310 ppm by 1950. Since then the human enterprise has experienced a remarkable explosion, the Great Acceleration, with significant consequences for Earth System functioning. Atmospheric CO2 concentration has risen from 310 to 380 ppm since 1950, with about half of the total rise since the preindustrial era occurring in just the last 30 years. The Great Acceleration is reaching criticality. Whatever unfolds, the next few decades will surely be a tipping point in the evolution of the Anthropocene.

2,585 citations