scispace - formally typeset
Search or ask a question
Author

Helmut Knözinger

Bio: Helmut Knözinger is an academic researcher from Ludwig Maximilian University of Munich. The author has contributed to research in topics: Catalysis & Adsorption. The author has an hindex of 62, co-authored 289 publications receiving 17624 citations. Previous affiliations of Helmut Knözinger include Max Planck Society & Thomas University.


Papers
More filters
Reference BookDOI
10 Jul 1997
TL;DR: This paper presents a meta-modelling system that automates the very labor-intensive and therefore time-heavy and therefore expensive and expensive process of characterization and activation of Solid Catalysts.
Abstract: Preparation of Solid Catalysts. Characterization of Solid Catalysts. Model Systems. Elementary Steps and Mechanisms. Kinetics and Transport Processes. Deactivation and Regeneration. Special Catalytic Systems. Laboratory Reactors. Reaction Engineering. Environmental Catalysis. Inorganic Reactions. Energy-related Catalysis. Organic Reactions.

4,227 citations

Journal ArticleDOI
TL;DR: Aluminas have been used extensively as adsorbenu and active catalysrs and catalyst supponsm the pas as discussed by the authors, and they are used as catalysts for the larter process LS also caralyzed by molybdena-alumina.
Abstract: Aluminas have been used extensively as adsorbenu and active catalysrs and catalyst supponsm the pas. Already in 1197 the aluminadyzed dehydration of ettllnoi was dtscavered by Dutch chermsts: and S;rbatier [3] remewed the use of dumlnas as active cazaiysrs far vanous reacttons UI the second decade of thu century. She that time the applicazions of aluuuas m dycic pmcesses have mcreased tremendously. In tndustrral cualytic pmcesses, alumuus are mostiy used as catalyst suppons [4]. Oxides a d mued oxides ap well as tracuuion mauls and noble meare supported oa alumma. Thuscb. romaa-elumana catalysts are ktng used for the conversion of parafdns to olailnrc hydrocarbons, 10 hydrodealkplation of aromatics. and to a lesser exzm in catalyzic reforming. The larter process LS also caralyzed by molybdena-alumina, a cavlyst system whid is also active for malang toluene and ocher aromatics from satwed hydrocarc bons. It also dyzes the Isomerhation of pm. Great efions are presently be-made to nudy the surface c...

1,665 citations

Journal ArticleDOI
TL;DR: The application of small and weakly interacting probe molecules for the characterization of acidic and basic properties by FTIR spectroscopy is exemplified by using H- and alkali cation-exchanged zeolites as typical solid Bronsted and Lewis acids and Lewis bases as discussed by the authors.
Abstract: The application of small and weakly interacting probe molecules for the characterization of acidic and basic properties by FTIR spectroscopy is exemplified by using H- and alkali cation-exchanged zeolites as typical solid Bronsted and Lewis acids and Lewis bases. Criteria for the selection of probe molecules are given. Bronsted acidity can be characterized by the H-bonding method when CO and N2 are used as molecular probes. Quantum chemical calculations are shown to provide important additional information on the electronic nature of the adsorption interaction and the vibrational behaviour of the probe molecule. Lewis acidity dominates in cation-exchanged zeolites for small cations (Li+, Na+) whereas basic properties develop with increasing cation radius. CO, CO2, N2 and CH4 interact with cation centers, the interaction energy decreasing with increasing cation radius. CO at very low equilibrium pressures permits a siting of Na+, and the Al distribution in six-rings (SII-sites) can be probed. CH4 interacts with cations in the M+···H3CH configuration having C3v symmetry. CH-acids such as Cl3CH(D), acetylene and methylacetylene, are shown to be potentially suitable probe molecules for basic properties using the H-bonding method. All three molecules undergo Oz2−···H–C H-bonding and the induced red-shift of the C–H stretching frequency permits a ranking of the base strength of a given series of materials.

322 citations

BookDOI
26 Aug 1999
TL;DR: A computer-aided approach for the design of industrial catalysts is described in this paper. But this approach is limited to two types of catalysts: Bulk and Supported Catalysts.
Abstract: Developing Industrial Catalysts. Bulk Catalysts and Supports. Supported Catalysts. Zeolites and Related Molecular Sieves. Solid Superacids. Catalyst Forming. Computer-Aided Catalyst Design.

309 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Corma et al. as mentioned in this paper used the Dupont Award on new materials (1995), and the Spanish National Award “Leonardo Torres Quevedo” on Technology Research (1996) on technology research (1996), to recognize the performance of zeolites as catalysts for oil refining and petrochemistry.
Abstract: It is possible to say that zeolites are the most widely used catalysts in industry They are crystalline microporous materials which have become extremely successful as catalysts for oil refining, petrochemistry, and organic synthesis in the production of fine and speciality chemicals, particularly when dealing with molecules having kinetic diameters below 10 A The reason for their success in catalysis is related to the following specific features of these materials:1 (1) They have very high surface area and adsorption capacity (2) The adsorption properties of the zeolites can be controlled, and they can be varied from hydrophobic to hydrophilic type materials (3) Active sites, such as acid sites for instance, can be generated in the framework and their strength and concentration can be tailored for a particular application (4) The sizes of their channels and cavities are in the range typical for many molecules of interest (5-12 A), and the strong electric fields2 existing in those micropores together with an electronic confinement of the guest molecules3 are responsible for a preactivation of the reactants (5) Their intricate channel structure allows the zeolites to present different types of shape selectivity, ie, product, reactant, and transition state, which can be used to direct a given catalytic reaction toward the desired product avoiding undesired side reactions (6) All of these properties of zeolites, which are of paramount importance in catalysis and make them attractive choices for the types of processes listed above, are ultimately dependent on the thermal and hydrothermal stability of these materials In the case of zeolites, they can be activated to produce very stable materials not just resistant to heat and steam but also to chemical attacks Avelino Corma Canos was born in Moncofar, Spain, in 1951 He studied chemistry at the Universidad de Valencia (1967−1973) and received his PhD at the Universidad Complutense de Madrid in 1976 He became director of the Instituto de Tecnologia Quimica (UPV-CSIC) at the Universidad Politecnica de Valencia in 1990 His current research field is zeolites as catalysts, covering aspects of synthesis, characterization and reactivity in acid−base and redox catalysis A Corma has written about 250 articles on these subjects in international journals, three books, and a number of reviews and book chapters He is a member of the Editorial Board of Zeolites, Catalysis Review Science and Engineering, Catalysis Letters, Applied Catalysis, Journal of Molecular Catalysis, Research Trends, CaTTech, and Journal of the Chemical Society, Chemical Communications A Corma is coauthor of 20 patents, five of them being for commercial applications He has been awarded with the Dupont Award on new materials (1995), and the Spanish National Award “Leonardo Torres Quevedo” on Technology Research (1996) 2373 Chem Rev 1997, 97, 2373−2419

5,290 citations

Journal ArticleDOI
TL;DR: A comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals, including a brief introduction to nucleation and growth within the context of metal Nanocrystal synthesis, followed by a discussion of the possible shapes that aMetal nanocrystal might take under different conditions.
Abstract: Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

4,927 citations

Journal ArticleDOI
TL;DR: In this paper, photo-induced superhydrophilicity was used on the surface of a wide-band gap semiconductor like titanium dioxide (TiO 2 ) for photocatalytic activity towards environmentally hazardous compounds.

4,241 citations

Journal ArticleDOI
TL;DR: The first steps towards using computational methods to design new catalysts are reviewed and how, in the future, such methods may be used to engineer the electronic structure of the active surface by changing its composition and structure are discussed.
Abstract: Over the past decade the theoretical description of surface reactions has undergone a radical development. Advances in density functional theory mean it is now possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare favourably with experiments. Theoretical methods can be used to describe surface chemical reactions in detail and to understand variations in catalytic activity from one catalyst to another. Here, we review the first steps towards using computational methods to design new catalysts. Examples include screening for catalysts with increased activity and catalysts with improved selectivity. We discuss how, in the future, such methods may be used to engineer the electronic structure of the active surface by changing its composition and structure.

3,023 citations