scispace - formally typeset
Search or ask a question
Author

Helmut Seidel

Other affiliations: TMEIC Corporation, Daimler AG
Bio: Helmut Seidel is an academic researcher from Saarland University. The author has contributed to research in topics: Thin film & Silicon. The author has an hindex of 25, co-authored 119 publications receiving 3923 citations. Previous affiliations of Helmut Seidel include TMEIC Corporation & Daimler AG.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the anisotropic etching behavior of single-crystal silicon and the behavior of and in an ethylenediamine-based solution as well as in aqueous,, and were studied.
Abstract: The anisotropic etching behavior of single‐crystal silicon and the behavior of and in an ethylenediaminebased solution as well as in aqueous , , and were studied. The crystal planes bounding the etch front and their etch rates were determined as a function of temperature, crystal orientation, and etchant composition. A correlation was found between the etch rates and their activation energies, with slowly etching crystal surfaces exhibiting higher activation energies and vice versa. For highly concentrated solutions, a decrease of the etch rate with the fourth power of the water concentration was observed. Based on these results, an electrochemical model is proposed, describing the anisotropic etching behavior of silicon in all alkaline solutions. In an oxidation step, four hydroxide ions react with one surface silicon atom, leading to the injection of four electrons into the conduction band. These electrons stay localized near the crystal surface due to the presence of a space charge layer. The reaction is accompanied by the breaking of the backbonds, which requires the thermal excitation of the respective surface state electrons into the conduction band. This step is considered to be rate limiting. In a reduction step, the injected electrons react with water molecules to form new hydroxide ions and hydrogen. It is assumed that these hydroxide ions generated at the silicon surface are consumed in the oxidation reaction rather than those from the bulk electrolyte, since the latter are kept away from the crystal by the repellent force of the negative surface charge. According to this model, monosilicic acid is formed as the primary dissolution product in all anisotropic silicon etchants. The anisotropic behavior is due to small differences of the energy levels of the backbond surface states as a function of the crystal orientation.

1,529 citations

Journal ArticleDOI
TL;DR: In this article, the etching behavior of highly boron doped silicon in aqueous solutions based of ethylenediamine, KOH, NaOH, and LiOH was studied.
Abstract: The etching behavior of highly boron doped silicon in aqueous solutions based of ethylenediamine, KOH, NaOH, and LiOH was studied. For all etchants, a strong reduction of the etch rate for boron concentrations exceeding approximately 2 �9 10 ~9 cm -3 was observed. This value is in good agreement with published data for the onset of degeneracy of p-type silicon. The reduction of the etch rate was found to be inversely proportional to the fourth power of the boron concentration. For a given high boron concentration, the etch stop effect was found to be most effective for ethylenediamine-based solutions and low concentration KOH and least effective for highly concentrated KOH. On the basis of these results, a model is proposed attributing the etch stop phenomenon to electrical effects of holes rather than chemical effects of boron. Due to the high dopant concentration the width of the space charge layer on the silicon surface shrinks drastically. Therefore, electrons injected into the conduction band by an oxidation reaction cannot be confined to the surface and rapidly recombine with holes from the valence band. The lack of these electrons impedes the reduction of water and thereby the formation of new hydroxide ions at the silicon surface. Since the transfer of four electrons is required for the dissolution of one silicon atom the observed fourth power law for the decrease of the etch rate can be explained. The reduction of the etch rate on silicon doped with germanium or phosphorus is much smaller and follows a different mechanism.

519 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of different sputtering conditions on the microstructure of AlN thin films with a typical thickness of about 500mm was investigated, and it was demonstrated that highly c-axis oriented Aln thin films can be deposited on nominally unheated (1 −0 −0) silicon substrates, most preferentially when using a pure nitrogen atmosphere.
Abstract: Aluminium nitride (AlN) reactively sputter-deposited from an aluminium target is an interesting piezoelectric thin film material with high CMOS compatibility. A good c -axis orientation is essential for obtaining high piezoelectric coefficients. Therefore, the influence of different sputtering conditions on the microstructure of AlN thin films with a typical thickness of about 500 nm was investigated. In this study it is demonstrated that highly c -axis oriented AlN thin films can be deposited on nominally unheated (1 0 0) silicon substrates, most preferentially when using a pure nitrogen atmosphere. The degree of c -axis orientation increases with higher nitrogen concentration and with decreasing the sputtering pressure, whereas the influence of plasma power on the microstructure was found to be negligible. A low sputtering pressure is also useful for minimizing the amount of oxygen contaminations in the deposition chamber and hence for reducing the incorporation of impurities into the AlN films. Intrinsic stress values of AlN thin films were determined by wafer bow measurements and were found to be between −3.5 and 750 MPa depending on choice of deposition parameters. Finally, the piezoelectric coefficients d 33 and d 31 were determined experimentally by laser scanning vibrometry in conjunction with a theoretical model. Effective values in c -axis oriented 500 nm films with FWHM of 0.33° are 3.0 and −1.0 pm/V. For a film of 2.4 μm thickness, values of 5.0 and −1.8 pm/V were measured, which are near the bulk values.

147 citations

Journal ArticleDOI
TL;DR: In this paper, a doubly clamped beam coupled to a seismic mass is presented, where the beam is thermally excited by an implanted resistor and its vibration is sensed piezoresistively.
Abstract: A new resonant accelerometer is presented consisting of a doubly clamped beam coupled to a seismic mass. The beam is thermally excited by an implanted resistor and its vibration is sensed piezoresistively. An acceleration which deflects the seismic mass leads to characteristic strains inside the resonator, shifting its resonance frequency. We studied the oscillation characteristics of the resonant beam. The non-linearity at high excitation amplitudes is treated theoretically and experimentally. Further, it is shown that the electrical and thermal cross-talk can be eliminated. The resonant sensing principle ensures a quasi-digital output signal, high sensitivity and a mechanical integrity test. Advanced automotive safety systems and x-by wire applications require a high reliability of the employed sensors. The sensor presented here allows an on-going self-test without any constructive changes of the sensor element. The self-test concept, we developed also finds applications in other sensors with resonant structures.

137 citations

Journal ArticleDOI
TL;DR: In this paper, the design and performance of a capacitive micromechanical accelerometer, as well as an electronic circuit for the conditioning of the output signal are described, which consists of a differential capacitance which is formed by a seismic silicon mass and two counter electrodes situated on anodically bonded glass plates.
Abstract: The design and performance of a capacitive micromechanical accelerometer, as well as an electronic circuit for the conditioning of the output signal are described. The sensing element consists of a differential capacitance which is formed by a seismic silicon mass and two counter electrodes situated on anodically bonded glass plates. The mass is symmetrically suspended on at least eight cantilever beams located on both sides of the silicon wafer. For a ±5 g device a typical sensitivity of 1 pF/ g with a zero capacitance of 10 pF and a detection limit below 1 m g was achieved. For signal conditioning a switched capacitor CMOS-ASIC was developed, yielding an analogue voltage output signal.

109 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors survey progress over the past 25 years in the development of microscale devices for pumping fluids and attempt to provide both a reference for micropump researchers and a resource for those outside the field who wish to identify the best micropumps for a particular application.
Abstract: We survey progress over the past 25 years in the development of microscale devices for pumping fluids. We attempt to provide both a reference for micropump researchers and a resource for those outside the field who wish to identify the best micropump for a particular application. Reciprocating displacement micropumps have been the subject of extensive research in both academia and the private sector and have been produced with a wide range of actuators, valve configurations and materials. Aperiodic displacement micropumps based on mechanisms such as localized phase change have been shown to be suitable for specialized applications. Electroosmotic micropumps exhibit favorable scaling and are promising for a variety of applications requiring high flow rates and pressures. Dynamic micropumps based on electrohydrodynamic and magnetohydrodynamic effects have also been developed. Much progress has been made, but with micropumps suitable for important applications still not available, this remains a fertile area for future research.

1,913 citations

Journal Article
TL;DR: In this article, a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators were developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of 3D micro-optical and micromechanical structures, including photonic-bandgap-type structures.
Abstract: Two-photon excitation provides a means of activating chemical or physical processes with high spatial resolution in three dimensions and has made possible the development of three-dimensional fluorescence imaging, optical data storage, and lithographic microfabrication. These applications take advantage of the fact that the two-photon absorption probability depends quadratically on intensity, so under tight-focusing conditions, the absorption is confined at the focus to a volume of order λ3 (where λ is the laser wavelength). Any subsequent process, such as fluorescence or a photoinduced chemical reaction, is also localized in this small volume. Although three-dimensional data storage and microfabrication have been illustrated using two-photon-initiated polymerization of resins incorporating conventional ultraviolet-absorbing initiators, such photopolymer systems exhibit low photosensitivity as the initiators have small two-photon absorption cross-sections (δ). Consequently, this approach requires high laser power, and its widespread use remains impractical. Here we report on a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators. Two-photon excitable resins based on these new initiators have been developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of three-dimensional micro-optical and micromechanical structures, including photonic-bandgap-type structures.

1,833 citations

Journal ArticleDOI
01 Dec 1998
TL;DR: Inertial sensors have seen a steady improvement in their performance, and today, microaccelerometers can resolve accelerations in the micro-g range, while the performance of gyroscopes has improved by a factor of 10/spl times/ every two years during the past eight years.
Abstract: This paper presents a review of silicon micromachined accelerometers and gyroscopes. Following a brief introduction to their operating principles and specifications, various device structures, fabrication, technologies, device designs, packaging, and interface electronics issues, along with the present status in the commercialization of micromachined inertial sensors, are discussed. Inertial sensors have seen a steady improvement in their performance, and today, microaccelerometers can resolve accelerations in the micro-g range, while the performance of gyroscopes has improved by a factor of 10/spl times/ every two years during the past eight years. This impressive drive to higher performance, lower cost, greater functionality, higher levels of integration, and higher volume will continue as new fabrication, circuit, and packaging techniques are developed to meet the ever increasing demand for inertial sensors.

1,816 citations

Journal ArticleDOI
TL;DR: In this paper, the etch rates of 53 materials that are used or potentially can be used or in the fabrication of microelectromechanical systems and integrated circuits were prepared.
Abstract: Samples of 53 materials that are used or potentially can be used or in the fabrication of microelectromechanical systems and integrated circuits were prepared: single-crystal silicon with two doping levels, polycrystalline silicon with two doping levels, polycrystalline germanium, polycrystalline SiGe, graphite, fused quartz, Pyrex 7740, nine other preparations of silicon dioxide, four preparations of silicon nitride, sapphire, two preparations of aluminum oxide, aluminum, Al/2%Si, titanium, vanadium, niobium, two preparations of tantalum, two preparations of chromium, Cr on Au, molybdenum, tungsten, nickel, palladium, platinum, copper, silver, gold, 10 Ti/90 W, 80 Ni/20 Cr, TiN, four types of photoresist, resist pen, Parylene-C, and spin-on polyimide. Selected samples were etched in 35 different etches: isotropic silicon etchant, potassium hydroxide, 10:1 HF, 5:1 BHF, Pad Etch 4, hot phosphoric acid, Aluminum Etchant Type A, titanium wet etchant, CR-7 chromium etchant, CR-14 chromium etchant, molybdenum etchant, warm hydrogen peroxide, Copper Etchant Type CE-200, Copper Etchant APS 100, dilute aqua regia, AU-5 gold etchant, Nichrome Etchant TFN, hot sulfuric+phosphoric acids, Piranha, Microstrip 2001, acetone, methanol, isopropanol, xenon difluoride, HF+H/sub 2/O vapor, oxygen plasma, two deep reactive ion etch recipes with two different types of wafer clamping, SF/sub 6/ plasma, SF/sub 6/+O/sub 2/ plasma, CF/sub 4/ plasma, CF/sub 4/+O/sub 2/ plasma, and argon ion milling. The etch rates of 620 combinations of these were measured. The etch rates of thermal oxide in different dilutions of HF and BHF are also reported. Sample preparation and information about the etches is given.

1,256 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the current state of experimental data for basic parameters such as point-defect diffusivities and equilibrium concentrations and address a number of questions regarding the mechanisms of dopant diffusion.
Abstract: Diffusion in silicon of elements from columns III and V of the Periodic Table is reviewed in theory and experiment. The emphasis is on the interactions of these substitutional dopants with point defects (vacancies and interstitials) as part of their diffusion mechanisms. The goal of this paper is to unify available experimental observations within the framework of a set of physical models that can be utilized in computer simulations to predict diffusion processes in silicon. The authors assess the present state of experimental data for basic parameters such as point-defect diffusivities and equilibrium concentrations and address a number of questions regarding the mechanisms of dopant diffusion. They offer illustrative examples of ways that diffusion may be modeled in one and two dimensions by solving continuity equations for point defects and dopants. Outstanding questions and inadequacies in existing formulations are identified by comparing computer simulations with experimental results. A summary of the progress made in this field in recent years and of directions future research may take is presented.

1,155 citations