scispace - formally typeset
Search or ask a question
Author

Hem C. Kandpal

Bio: Hem C. Kandpal is an academic researcher from Indian Institute of Technology Roorkee. The author has contributed to research in topics: Magnetic moment & Ferromagnetism. The author has an hindex of 27, co-authored 57 publications receiving 5191 citations. Previous affiliations of Hem C. Kandpal include Indian Institute of Science & Leibniz Association.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, results of band structure calculations for Heusler compounds that have $A$ and $B$ sites occupied by transition metals and $C$ by a main group element are presented.
Abstract: In this work, results of {\it ab-initio} band structure calculations for $A_2BC$ Heusler compounds that have $A$ and $B$ sites occupied by transition metals and $C$ by a main group element are presented. This class of materials includes some interesting half-metallic and ferromagnetic properties. The calculations have been performed in order to understand the properties of the minority band gap and the peculiar magnetic behavior found in these materials. Among the interesting aspects of the electronic structure of the materials are the contributions from both $A$ and $B$ atoms to states near the Fermi energy and to the total magnetic moment. The magnitude of the total magnetic moment, which depends as well on the kind of $C$ atoms, shows a trend consistent with the Slater-Pauling type behavior in several classes of these compounds. The localized moment in these magnetic compounds resides at the $B$ site. Other than in the classical Cu$_2$-based Heusler compounds, the $A$ atoms in Co$_2$, Fe$_2$, and Mn$_2$ based compounds may contribute pronounced to the total magnetic moment.

648 citations

Journal ArticleDOI
TL;DR: In this paper, results of ab initio band structure calculations for A2BC Heusler compounds that have A and B sites occupied by transition metals and C by a main group element are presented.
Abstract: In this paper, results of ab initio band structure calculations for A2BC Heusler compounds that have A and B sites occupied by transition metals and C by a main group element are presented. This class of materials includes some interesting half-metallic and ferromagnetic properties. The calculations have been performed in order to understand the properties of the minority band gap, the peculiar transport properties and magnetic behaviour found in these materials. Among the interesting aspects of the electronic structure of the materials are the contributions from both A and B atoms to the total magnetic moment. The magnitude of the total magnetic moment shows a trend consistent with the Slater–Pauling type behaviour in several classes of these compounds. The total magnetic moment also depends on the kind of C atoms although they do not directly contribute to it. In Co2 compounds, a change of the C element changes the contribution of the t2g states to the moment at the Co sites. The localized moment in these magnetic compounds resides at the B site. Other than in the classical Cu2-based Heusler compounds, the A atoms in Co2, Fe2 and Mn2-based compounds may contribute significantly to the total magnetic moment. It is shown that the inclusion of electron–electron correlation in the form of LDA + U calculations helps to understand the magnetic properties of those compounds that already exhibit a minority gap in calculations where it is neglected. Besides the large group of Co2 compounds, half-metallic ferromagnetism was here found only in such compounds that contain Mn.

617 citations

Journal ArticleDOI
TL;DR: In this article, a simple concept was used for a systematic search for materials with high spin polarization, based on two semi-empirical models: the Slater-Pauling rule was used to estimate the magnetic moment and the second model was found particularly for Heusler compounds when comparing their magnetic properties.
Abstract: In this work a simple concept was used for a systematic search for materials with high spin polarization It is based on two semiempirical models First, the Slater-Pauling rule was used for estimation of the magnetic moment This model is well supported by electronic structure calculations The second model was found particularly for ${\mathrm{Co}}_{2}$ based Heusler compounds when comparing their magnetic properties It turned out that these compounds exhibit seemingly a linear dependence of the Curie temperature as function of the magnetic moment Stimulated by these models, ${\mathrm{Co}}_{2}\mathrm{FeSi}$ was revisited The compound was investigated in detail concerning its geometrical and magnetic structure by means of x-ray diffraction, x-ray absorption, and M\"ossbauer spectroscopies as well as high and low temperature magnetometry The measurements revealed that it is, currently, the material with the highest magnetic moment $(6{\ensuremath{\mu}}_{B})$ and Curie temperature (1100 K) in the classes of Heusler compounds as well as half-metallic ferromagnets The experimental findings are supported by detailed electronic structure calculations

550 citations

Journal ArticleDOI
TL;DR: In this article, structural and magnetic investigations of the Heusler compound Co2FeSi have been carried out by means of x-ray magnetic circular dichroism and magnetometry, and it has been shown that this compound is, currently, the material with the highest magnetic moment (6μB) and Curie temperature (1100K) in the classes of half-metallic ferromagnets.
Abstract: This work reports on structural and magnetic investigations of the Heusler compound Co2FeSi. X-ray diffraction and Mosbauer spectrometry indicate an ordered L21 structure. Magnetic measurements by means of x-ray magnetic circular dichroism and magnetometry revealed that this compound is, currently, the material with the highest magnetic moment (6μB) and Curie temperature (1100K) in the classes of Heusler compounds as well as half-metallic ferromagnets.

374 citations

Journal ArticleDOI
TL;DR: In this article, structural and magnetic investigations of the Heusler compound Co$_2$FeSi were carried out using X-ray diffraction and M *ss bauer spectrometry.
Abstract: This work reports on structural and magnetic investigations of the Heusler compound Co$_2$FeSi. X-Ray diffraction and M\"o\ss bauer spectrometry indicate an ordered $L2_1$ structure. Magnetic measurements by means of X-ray magnetic circular dichroism and magnetometry revealed that this compound is, currently, the material with the highest magnetic moment ($6 \mu_B$) and Curie-temperature (1100K) in the classes of Heusler compounds as well as half-metallic ferromagnets.

337 citations


Cited by
More filters
Journal ArticleDOI

3,711 citations

Journal ArticleDOI
TL;DR: Weyl and Dirac semimetals as discussed by the authors are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry, and they have generated much recent interest.
Abstract: Weyl and Dirac semimetals are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry. As three-dimensional analogs of graphene, they have generated much recent interest. Deep connections exist with particle physics models of relativistic chiral fermions, and, despite their gaplessness, to solid-state topological and Chern insulators. Their characteristic electronic properties lead to protected surface states and novel responses to applied electric and magnetic fields. The theoretical foundations of these phases, their proposed realizations in solid-state systems, and recent experiments on candidate materials as well as their relation to other states of matter are reviewed.

3,407 citations

Journal ArticleDOI
TL;DR: Heusler compounds as discussed by the authors are a remarkable class of intermetallic materials with 1:1:1 or 2:1-1 composition comprising more than 1500 members, and their properties can easily be predicted by the valence electron count.

1,675 citations

Journal ArticleDOI
TL;DR: The computer program LOBSTER (Local Orbital Basis Suite Towards Electronic‐Structure Reconstruction) enables chemical‐bonding analysis based on periodic plane‐wave density‐functional theory output and is applicable to a wide range of first‐principles simulations in solid‐state and materials chemistry.
Abstract: The computer program LOBSTER (Local Orbital Basis Suite Towards Electronic-Structure Reconstruction) enables chemical-bonding analysis based on periodic plane-wave (PAW) density-functional theory (DFT) output and is applicable to a wide range of first-principles simulations in solid-state and materials chemistry. LOBSTER incorporates analytic projection routines described previously in this very journal [J. Comput. Chem. 2013, 34, 2557] and offers improved functionality. It calculates, among others, atom-projected densities of states (pDOS), projected crystal orbital Hamilton population (pCOHP) curves, and the recently introduced bond-weighted distribution function (BWDF). The software is offered free-of-charge for non-commercial research. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

1,531 citations

Journal ArticleDOI
TL;DR: This review describes the recent advances in designing high-performance bulk thermoelectric materials and highlights the decoupling of the electron and phonon transport through coherent interface, matrix/precipitate electronic bands alignment, and compositionally alloyed nanostructures.
Abstract: There has been a renaissance of interest in exploring highly efficient thermoelectric materials as a possible route to address the worldwide energy generation, utilization, and management. This review describes the recent advances in designing high-performance bulk thermoelectric materials. We begin with the fundamental stratagem of achieving the greatest thermoelectric figure of merit ZT of a given material by carrier concentration engineering, including Fermi level regulation and optimum carrier density stabilization. We proceed to discuss ways of maximizing ZT at a constant doping level, such as increase of band degeneracy (crystal structure symmetry, band convergence), enhancement of band effective mass (resonant levels, band flattening), improvement of carrier mobility (modulation doping, texturing), and decrease of lattice thermal conductivity (synergistic alloying, second-phase nanostructuring, mesostructuring, and all-length-scale hierarchical architectures). We then highlight the decoupling of th...

1,469 citations