scispace - formally typeset
Search or ask a question
Author

Hemant Kumar

Bio: Hemant Kumar is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: MXenes & Carbon nanotube. The author has an hindex of 19, co-authored 40 publications receiving 1435 citations. Previous affiliations of Hemant Kumar include Indian Institute of Technology Bhubaneswar & Indian Institute of Science.

Papers
More filters
Journal ArticleDOI
07 Jun 2017-ACS Nano
TL;DR: High magnetic moments, high Curie temperatures, robust ferromagnetism, and intrinsic half-metallic transport behavior of M2NTx nitride MXene structures suggest that they are promising candidates for spintronic applications, which should stimulate interest in their synthesis.
Abstract: Two-dimensional materials with intrinsic and robust ferromagnetism and half-metallicity are of great interest to explore the exciting physics and applications of nanoscale spintronic devices, but no such materials have been experimentally realized In this study, we predict several M2NTx nitride MXene structures that display these characteristics based on a comprehensive study using a crystal field theory model and first-principles simulations We demonstrate intrinsic ferromagnetism in Mn2NTx with different surface terminations (T = O, OH, and F), as well as in Ti2NO2 and Cr2NO2 High magnetic moments (up to 9 μB per unit cell), high Curie temperatures (1877 to 566 K), robust ferromagnetism, and intrinsic half-metallic transport behavior of these MXenes suggest that they are promising candidates for spintronic applications, which should stimulate interest in their synthesis

262 citations

Journal ArticleDOI
TL;DR: A density functional theory study of various Janus TMD monolayers as HER catalysts reveals that the introduction of in-gap states and a shift in the Fermi level in hydrogen adsorbed systems due to Janus asymmetry is the origin of enhanced HER activity.
Abstract: Significant efforts have been made in improving the hydrogen evolution reaction (HER) catalytic activity in transition metal dichalcogenides (TMDs), which are promising nonprecious catalysts. However, previous attempts have exploited possible solutions to activate the inert basal plane, with little improvement. Among them, the most successful modification requires a careful manipulation of vacancy concentration and strain simultaneously. To fully realize the promise of TMD catalysts for HER in an easier and more effective way, a new means in tuning the HER catalytic activity is needed. Herein, we propose exploiting the inherent structural asymmetry in the recently synthesized family of Janus TMDs as a new means to stimulate HER activity. We report a density functional theory (DFT) study of various Janus TMD monolayers as HER catalysts, and identify the WSSe system as a promising candidate, where the basal plane can be activated without large applied tensile strains and in the absence of significant density of vacancies. We predict that it is possible to realize a strain-free Janus TMD-based catalyst that can readily provide promising intrinsic HER catalytic performance. The calculated density of states and electronic structures reveal that the introduction of in-gap states and a shift in the Fermi level in hydrogen adsorbed systems due to Janus asymmetry is the origin of enhanced HER activity. Our results should pave the way to design high-performance and easy-accessible TMD-based HER catalysts.

238 citations

Journal ArticleDOI
TL;DR: The relatively simple SPC/E water model yields results in close agreement with those obtained from polarizable water models, and the structure and thermodynamics of water confined in the slit pore between two GO sheets with both oxidized and reduced parts are provided.
Abstract: ConspectusUnderstanding the properties of strongly confined water is important for a variety of applications such as fast flow and desalination devices, voltage generation, flow sensing, and nanofluidics. Confined water also plays an important role in many biological processes such as flow through ion channels. Water in the bulk exhibits many unusual properties that arise primarily from the presence of a network of hydrogen bonds. Strong confinement in structures such as carbon nanotubes (CNTs) substantially modifies the structural, thermodynamic, and dynamic (both translational and orientational) properties of water by changing the structure of the hydrogen bond network. In this Account, we provide an overview of the behavior of water molecules confined inside CNTs and slit pores between graphene and graphene oxide (GO) sheets.Water molecules confined in narrow CNTs are arranged in a single file and exhibit solidlike ordering at room temperature due to strong hydrogen bonding between nearest-neighbor mol...

157 citations

Journal ArticleDOI
TL;DR: Two-dimensional materials that display robust ferromagnetism have been pursued intensively for nanoscale spintronic applications, but suitable candidates have not been identified and theoretical predictions on the design of ordered double-transition-metal MXene structures to achieve such a goal are presented.
Abstract: Two-dimensional (2D) materials that display robust ferromagnetism have been pursued intensively for nanoscale spintronic applications, but suitable candidates have not been identified. Here we present theoretical predictions on the design of ordered double-transition-metal MXene structures to achieve such a goal. On the basis of the analysis of electron filling in transition-metal cations and first-principles simulations, we demonstrate robust ferromagnetism in Ti2MnC2Tx monolayers regardless of the surface terminations (T = O, OH, and F), as well as in Hf2MnC2O2 and Hf2VC2O2 monolayers. The high magnetic moments (3–4 μB/unit cell) and high Curie temperatures (495–1133 K) of these MXenes are superior to those of existing 2D ferromagnetic materials. Furthermore, semimetal-to-semiconductor and ferromagnetic-to-antiferromagnetic phase transitions are predicted to occur in these materials in the presence of small or moderate tensile in-plane strains (0–3%), which can be externally applied mechanically or inte...

151 citations

Journal ArticleDOI
17 Jan 2019-ACS Nano
TL;DR: It is predicted that transition metal carbide and nitride MXenes are promising candidates for controllable magnetic 2D materials and a strategy for exploiting asymmetric surface functionalization to achieve room-temperature nanoscale magnetism under ambient conditions in MXenes is provided.
Abstract: Controlling magnetism in two-dimensional (2D) materials via electric fields and doping enables robust long-range order by providing an external mechanism to modulate magnetic exchange interactions and anisotropy. In this report, we predict that transition metal carbide and nitride MXenes are promising candidates for controllable magnetic 2D materials. The surface terminations introduced during synthesis act as chemical dopants that influence the electronic structure, enabling controllable magnetic order. We show ground-state magnetic ordering in Janus M2XOxF2–x (M is an early transition metal, X is carbon or nitrogen, and x = 0.5, 1, or 1.5) with asymmetric surface functionalization, where local structural and chemical disorder induces magnetic ordering in some systems that are nonmagnetic or weakly magnetic in their pristine form. The resulting magnetic states of these noncentrosymmetric structures can be robustly switched and stabilized by tuning the interlayer exchange couplings with small applied elec...

110 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the methods used to synthesize transition metal dichalcogenides (TMDCs) and their properties with particular attention to their charge density wave, superconductive and topological phases, along with their applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.
Abstract: Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties. Two-dimensional transition metal dichalcogenides (TMDCs) exhibit attractive electronic and mechanical properties. In this Review, the charge density wave, superconductive and topological phases of TMCDs are discussed, along with their synthesis and applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.

3,436 citations

Journal ArticleDOI
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

3,009 citations