scispace - formally typeset
Search or ask a question
Author

Hemma Mistry

Bio: Hemma Mistry is an academic researcher from University of Central Florida. The author has contributed to research in topics: Catalysis & Chemical state. The author has an hindex of 18, co-authored 25 publications receiving 3569 citations. Previous affiliations of Hemma Mistry include Ruhr University Bochum & University of California, Berkeley.

Papers
More filters
Journal ArticleDOI
TL;DR: The presented activity-selectivity-size relations provide novel insights in the CO2 electroreduction reaction on nanoscale surfaces and lend themselves well to density functional theory (DFT) evaluation and reaction mechanism verification.
Abstract: A study of particle size effects during the catalytic CO2 electroreduction on size-controlled Cu nanoparticles (NPs) is presented. Cu NP catalysts in the 2–15 nm mean size range were prepared, and their catalytic activity and selectivity during CO2 electroreduction were analyzed and compared to a bulk Cu electrode. A dramatic increase in the catalytic activity and selectivity for H2 and CO was observed with decreasing Cu particle size, in particular, for NPs below 5 nm. Hydrocarbon (methane and ethylene) selectivity was increasingly suppressed for nanoscale Cu surfaces. The size dependence of the surface atomic coordination of model spherical Cu particles was used to rationalize the experimental results. Changes in the population of low-coordinated surface sites and their stronger chemisorption were linked to surging H2 and CO selectivities, higher catalytic activity, and smaller hydrocarbon selectivity. The presented activity–selectivity–size relations provide novel insights in the CO2 electroreduction r...

1,012 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the roughness of oxide-derived copper catalysts plays only a partial role in determining the catalytic performance, while the presence of copper+ is key for lowering the onset potential and enhancing ethylene selectivity.
Abstract: There is an urgent need to develop technologies that use renewable energy to convert waste products such as carbon dioxide into hydrocarbon fuels. Carbon dioxide can be electrochemically reduced to hydrocarbons over copper catalysts, although higher efficiency is required. We have developed oxidized copper catalysts displaying lower overpotentials for carbon dioxide electroreduction and record selectivity towards ethylene (60%) through facile and tunable plasma treatments. Herein we provide insight into the improved performance of these catalysts by combining electrochemical measurements with microscopic and spectroscopic characterization techniques. Operando X-ray absorption spectroscopy and cross-sectional scanning transmission electron microscopy show that copper oxides are surprisingly resistant to reduction and copper(+) species remain on the surface during the reaction. Our results demonstrate that the roughness of oxide-derived copper catalysts plays only a partial role in determining the catalytic performance, while the presence of copper(+) is key for lowering the onset potential and enhancing ethylene selectivity.

854 citations

Journal ArticleDOI
TL;DR: In this article, the use of nanostructured materials for improving catalytic reactivity is analysed in the context of model reactions of O2 reduction, CO2 electroreduction and ethanol oxidation.
Abstract: The field of electrocatalysis has undergone tremendous advancement in the past few decades, in part owing to improvements in catalyst design at the nanoscale. These developments have been crucial for the realization of and improvement in alternative energy technologies based on electrochemical reactions such as fuel cells. Through the development of novel synthesis methods, characterization techniques and theoretical methods, rationally designed nanoscale electrocatalysts with tunable activity and selectivity have been achieved. This Review explores how nanostructures can be used to control electrochemical reactivity, focusing on three model reactions: O2 electroreduction, CO2 electroreduction and ethanol electrooxidation. The mechanisms behind nanoscale control of reactivity are discussed, such as the presence of low-coordinated sites or facets, strain, ligand effects and bifunctional effects in multimetallic materials. In particular, studies of how particle size, shape and composition in nanostructures can be used to tune reactivity are highlighted. New catalysis materials are required for electrochemical reactions that are vital for clean energy production and environmental remediation. The use of nanostructured materials for improving catalytic reactivity is analysed in this Review in the context of model reactions of O2 reduction, CO2 electroreduction and ethanol oxidation.

637 citations

Journal ArticleDOI
TL;DR: It is shown that the H2/CO product ratio can be specifically tailored for different industrial processes by tuning the size of the catalyst particles, which favor the evolution of H2 over CO2 reduction to CO.
Abstract: The electrocatalytic reduction of CO2 to industrial chemicals and fuels is a promising pathway to sustainable electrical energy storage and to an artificial carbon cycle, but it is currently hindered by the low energy efficiency and low activity displayed by traditional electrode materials. We report here the size-dependent catalytic activity of micelle-synthesized Au nanoparticles (NPs) in the size range of ∼1–8 nm for the electroreduction of CO2 to CO in 0.1 M KHCO3. A drastic increase in current density was observed with decreasing NP size, along with a decrease in Faradaic selectivity toward CO. Density functional theory calculations showed that these trends are related to the increase in the number of low-coordinated sites on small NPs, which favor the evolution of H2 over CO2 reduction to CO. We show here that the H2/CO product ratio can be specifically tailored for different industrial processes by tuning the size of the catalyst particles.

562 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented ultrathin amorphous high-surface area nickel boride (NixB) nanosheets as a low-cost, very efficient and stable catalyst for the oxygen evolution reaction (OER) for electrochemical water splitting.
Abstract: The overriding obstacle to mass production of hydrogen from water as the premium fuel for powering our planet is the frustratingly slow kinetics of the oxygen evolution reaction (OER). Additionally, inadequate understanding of the key barriers of the OER is a hindrance to insightful design of advanced OER catalysts. This study presents ultrathin amorphous high-surface area nickel boride (NixB) nanosheets as a low-cost, very efficient and stable catalyst for the OER for electrochemical water splitting. The catalyst affords 10 mA cm−2 at 0.38 V overpotential during OER in 1.0 m KOH, reducing to only 0.28 V at 20 mA cm−2 when supported on nickel foam, which ranks it among the best reported nonprecious catalysts for oxygen evolution. Operando X-ray absorption fine-structure spectroscopy measurements reveal prevalence of NiOOH, as well as Ni-B under OER conditions, owing to a Ni-B core@nickel oxyhydroxide shell (Ni-B@NiOxH) structure, and increase in disorder of the NiOxH layer, thus revealing important insight into the transient states of the catalyst during oxygen evolution.

320 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities in a unifying manner.
Abstract: Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal–support interaction, and metal–reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results o...

2,700 citations

Journal ArticleDOI
TL;DR: A broad and historical view of different aspects and their complex interplay in CO2R catalysis on Cu is taken, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices.
Abstract: To date, copper is the only heterogeneous catalyst that has shown a propensity to produce valuable hydrocarbons and alcohols, such as ethylene and ethanol, from electrochemical CO2 reduction (CO2R). There are variety of factors that impact CO2R activity and selectivity, including the catalyst surface structure, morphology, composition, the choice of electrolyte ions and pH, and the electrochemical cell design. Many of these factors are often intertwined, which can complicate catalyst discovery and design efforts. Here we take a broad and historical view of these different aspects and their complex interplay in CO2R catalysis on Cu, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices. First, we describe the various experimental probes and complementary theoretical methods that have been used to discern the mechanisms by which products are formed, and next we present our current understanding of the complex reaction networks for CO2R on Cu. We then analyze two key methods that have been used in attempts to alter the activity and selectivity of Cu: nanostructuring and the formation of bimetallic electrodes. Finally, we offer some perspectives on the future outlook for electrochemical CO2R.

2,055 citations

Journal ArticleDOI
11 Sep 2015-Science
TL;DR: Modular optimization of covalent organic frameworks (COFs) is reported, in which the building units are cobalt porphyrin catalysts linked by organic struts through imine bonds, to prepare a catalytic material for aqueous electrochemical reduction of CO2 to CO.
Abstract: Conversion of carbon dioxide (CO2) to carbon monoxide (CO) and other value-added carbon products is an important challenge for clean energy research. Here we report modular optimization of covalent organic frameworks (COFs), in which the building units are cobalt porphyrin catalysts linked by organic struts through imine bonds, to prepare a catalytic material for aqueous electrochemical reduction of CO2 to CO. The catalysts exhibit high Faradaic efficiency (90%) and turnover numbers (up to 290,000, with initial turnover frequency of 9400 hour(-1)) at pH 7 with an overpotential of -0.55 volts, equivalent to a 26-fold improvement in activity compared with the molecular cobalt complex, with no degradation over 24 hours. X-ray absorption data reveal the influence of the COF environment on the electronic structure of the catalytic cobalt centers.

1,844 citations

Journal ArticleDOI
TL;DR: This Perspective highlights several heterogeneous and molecular electrocatalysts for the reduction of CO2 and discusses the reaction pathways through which they form various products, including copper, a unique catalyst as it yields hydrocarbon products with acceptable efficiencies.
Abstract: The electrochemical reduction of CO2 has gained significant interest recently as it has the potential to trigger a sustainable solar-fuel-based economy. In this Perspective, we highlight several heterogeneous and molecular electrocatalysts for the reduction of CO2 and discuss the reaction pathways through which they form various products. Among those, copper is a unique catalyst as it yields hydrocarbon products, mostly methane, ethylene, and ethanol, with acceptable efficiencies. As a result, substantial effort has been invested to determine the special catalytic properties of copper and to elucidate the mechanism through which hydrocarbons are formed. These mechanistic insights, together with mechanistic insights of CO2 reduction on other metals and molecular complexes, can provide crucial guidelines for the design of future catalyst materials able to efficiently and selectively reduce CO2 to useful products.

1,396 citations

Journal ArticleDOI
Yuanjun Chen1, Shufang Ji1, Chen Chen1, Qing Peng1, Dingsheng Wang1, Yadong Li1 
18 Jul 2018-Joule
TL;DR: In this article, the authors highlight and summarize recent advances in wet-chemistry synthetic methods for single-atom catalysts with special emphasis on how to achieve the stabilization of single metal atoms against migration and agglomeration.

1,383 citations