scispace - formally typeset
Search or ask a question
Author

Hendrik Dahlkamp

Other affiliations: Stanford University
Bio: Hendrik Dahlkamp is an academic researcher from Google. The author has contributed to research in topics: Mobile device & Volume (computing). The author has an hindex of 11, co-authored 20 publications receiving 4143 citations. Previous affiliations of Hendrik Dahlkamp include Stanford University.

Papers
More filters
Journal ArticleDOI
TL;DR: The robot Stanley, which won the 2005 DARPA Grand Challenge, was developed for high‐speed desert driving without manual intervention and relied predominately on state‐of‐the‐art artificial intelligence technologies, such as machine learning and probabilistic reasoning.
Abstract: This article describes the robot Stanley, which won the 2005 DARPA Grand Challenge. Stanley was developed for high-speed desert driving without human intervention. The robot’s software system relied predominately on state-of-the-art AI technologies, such as machine learning and probabilistic reasoning. This article describes the major components of this architecture, and discusses the results of the Grand Challenge race.

2,011 citations

Journal IssueDOI
TL;DR: The architecture of Junior, a robotic vehicle capable of navigating urban environments autonomously, is presented, which successfully finished and won second place in the DARPA Urban Challenge, a robot competition organized by the U.S. Government.
Abstract: This article presents the architecture of Junior, a robotic vehicle capable of navigating urban environments autonomously. In doing so, the vehicle is able to select its own routes, perceive and interact with other traffic, and execute various urban driving skills including lane changes, U-turns, parking, and merging into moving traffic. The vehicle successfully finished and won second place in the DARPA Urban Challenge, a robot competition organized by the U.S. Government. © 2008 Wiley Periodicals, Inc.

832 citations

01 Jan 2009
TL;DR: The architecture of Junior, a robotic vehicle capable of navigating urban environments autonomously, successfully finished and won second place in the DARPA Urban Challenge, a robot competition organized by the U.S. Government.
Abstract: This article presents the architecture of Junior, a robotic vehicle capable of navigating urban environments autonomously. In doing so, the vehicle is able to select its own routes, perceive and interact with other traffic, and execute various urban driving skills including lane changes, U-turns, parking, and merging into moving traffic. The vehicle successfully finished and won second place in the DARPA Urban Challenge, a robot competition organized by the U.S. Government.

826 citations

Proceedings ArticleDOI
16 Aug 2006
TL;DR: This method for identifying drivable surfaces in difficult unpaved and offroad terrain conditions as encountered in the DARPA Grand Challenge robot race achieves robustness by combining sensor information from a laser range finder, a pose estimation system and a color camera.
Abstract: We present a method for identifying drivable surfaces in difficult unpaved and offroad terrain conditions as encountered in the DARPA Grand Challenge robot race. Instead of relying on a static, pre-computed road appearance model, this method adjusts its model to changing environments. It achieves robustness by combining sensor information from a laser range finder, a pose estimation system and a color camera. Using the first two modalities, the system first identifies a nearby patch of drivable surface. Computer Vision then takes this patch and uses it to construct appearance models to find drivable surface outward into the far range. This information is put into a drivability map for the vehicle path planner. In addition to evaluating the method’s performance using a scoring framework run on real-world data, the system was entered, and won, the 2005 DARPA Grand Challenge. Post-race log-file analysis proved that without the Computer Vision algorithm, the vehicle would not have driven fast enough to win.

385 citations

Journal IssueDOI
TL;DR: The robot Stanley, which won the 2005 DARPA Grand Challenge, was developed for high-speed desert driving without manual intervention using state-of-the-art artificial intelligence technologies, such as machine learning and probabilistic reasoning.
Abstract: This article describes the robot Stanley, which won the 2005 DARPA Grand Challenge. Stanley was developed for high-speed desert driving without manual intervention. The robot's software system relied predominately on state-of-the-art artificial intelligence technologies, such as machine learning and probabilistic reasoning. This paper describes the major components of this architecture, and discusses the results of the Grand Challenge race. © 2006 Wiley Periodicals, Inc.

306 citations


Cited by
More filters
Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Journal ArticleDOI
10 Jul 2015-PLOS ONE
TL;DR: This work proposes a general solution to the problem of understanding classification decisions by pixel-wise decomposition of nonlinear classifiers by introducing a methodology that allows to visualize the contributions of single pixels to predictions for kernel-based classifiers over Bag of Words features and for multilayered neural networks.
Abstract: Understanding and interpreting classification decisions of automated image classification systems is of high value in many applications, as it allows to verify the reasoning of the system and provides additional information to the human expert. Although machine learning methods are solving very successfully a plethora of tasks, they have in most cases the disadvantage of acting as a black box, not providing any information about what made them arrive at a particular decision. This work proposes a general solution to the problem of understanding classification decisions by pixel-wise decomposition of nonlinear classifiers. We introduce a methodology that allows to visualize the contributions of single pixels to predictions for kernel-based classifiers over Bag of Words features and for multilayered neural networks. These pixel contributions can be visualized as heatmaps and are provided to a human expert who can intuitively not only verify the validity of the classification decision, but also focus further analysis on regions of potential interest. We evaluate our method for classifiers trained on PASCAL VOC 2009 images, synthetic image data containing geometric shapes, the MNIST handwritten digits data set and for the pre-trained ImageNet model available as part of the Caffe open source package.

3,330 citations

Journal ArticleDOI
TL;DR: The robot Stanley, which won the 2005 DARPA Grand Challenge, was developed for high‐speed desert driving without manual intervention and relied predominately on state‐of‐the‐art artificial intelligence technologies, such as machine learning and probabilistic reasoning.
Abstract: This article describes the robot Stanley, which won the 2005 DARPA Grand Challenge. Stanley was developed for high-speed desert driving without human intervention. The robot’s software system relied predominately on state-of-the-art AI technologies, such as machine learning and probabilistic reasoning. This article describes the major components of this architecture, and discusses the results of the Grand Challenge race.

2,011 citations

Journal ArticleDOI
13 Jun 2016
TL;DR: In this article, the authors present a survey of the state of the art on planning and control algorithms with particular regard to the urban environment, along with a discussion of their effectiveness.
Abstract: Self-driving vehicles are a maturing technology with the potential to reshape mobility by enhancing the safety, accessibility, efficiency, and convenience of automotive transportation. Safety-critical tasks that must be executed by a self-driving vehicle include planning of motions through a dynamic environment shared with other vehicles and pedestrians, and their robust executions via feedback control. The objective of this paper is to survey the current state of the art on planning and control algorithms with particular regard to the urban setting. A selection of proposed techniques is reviewed along with a discussion of their effectiveness. The surveyed approaches differ in the vehicle mobility model used, in assumptions on the structure of the environment, and in computational requirements. The side by side comparison presented in this survey helps to gain insight into the strengths and limitations of the reviewed approaches and assists with system level design choices.

1,437 citations

01 Jan 2009
TL;DR: This dissertation aims to provide a history of web exceptionalism from 1989 to 2002, a period chosen in order to explore its roots as well as specific cases up to and including the year in which descriptions of “Web 2.0” began to circulate.
Abstract: Boss is an autonomous vehicle that uses on-board sensors (global positioning system, lasers, radars, and cameras) to track other vehicles, detect static obstacles, and localize itself relative to a road model. A three-layer planning system combines mission, behavioral, and motion planning to drive in urban environments. The mission planning layer considers which street to take to achieve a mission goal. The behavioral layer determines when to change lanes and precedence at intersections and performs error recovery maneuvers. The motion planning layer selects actions to avoid obstacles while making progress toward local goals. The system was developed from the ground up to address the requirements of the DARPA Urban Challenge using a spiral system development process with a heavy emphasis on regular, regressive system testing. During the National Qualification Event and the 85-km Urban Challenge Final Event, Boss demonstrated some of its capabilities, qualifying first and winning the challenge. © 2008 Wiley Periodicals, Inc.

1,275 citations