scispace - formally typeset
Search or ask a question
Author

Hendrik Simon Cornelis Metselaar

Other affiliations: University of Twente
Bio: Hendrik Simon Cornelis Metselaar is an academic researcher from University of Malaya. The author has contributed to research in topics: Nanofluid & Phase-change material. The author has an hindex of 43, co-authored 95 publications receiving 6599 citations. Previous affiliations of Hendrik Simon Cornelis Metselaar include University of Twente.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the stability of nanofluids is discussed as it has a major role in heat transfer enhancement for further possible applications, and general stabilization methods as well as various types of instruments for stability inspection.

948 citations

Journal ArticleDOI
TL;DR: In this paper, a review of organic phase change materials (PCMs) is presented, focusing on three aspects: the materials, encapsulation and applications of organic PCMs, and providing an insight on the recent developments in applications of these materials.

579 citations

Journal ArticleDOI
TL;DR: Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.

562 citations

Journal ArticleDOI
TL;DR: The principle of thermal insulation is by the proper installation of insulation using energy-efficient materials that would reduce the heat loss or heat gain, which leads to reduction of energy cost as the result as mentioned in this paper.
Abstract: In residential sector, air conditioning system takes the biggest portion of overall energy consumption to fulfil the thermal comfort need. In addressing the issue, thermal insulation is one efficient technology to utilize the energy in providing the desired thermal comfort by its environmentally friendly characteristics. The principle of thermal insulation is by the proper installation of insulation using energy-efficient materials that would reduce the heat loss or heat gain, which leads to reduction of energy cost as the result. This paper is aimed to gather most recent developments on the building thermal insulations and also to discuss about the life-cycle analysis and potential emissions reduction by using proper insulation materials.

423 citations

Journal ArticleDOI
TL;DR: In this article, stable homogeneous graphene nanoplatelet (GNP) nanofluids were prepared without any surfactant by high-power ultrasonic (probe) dispersion of GNPs in distilled water.
Abstract: In the present study, stable homogeneous graphene nanoplatelet (GNP) nanofluids were prepared without any surfactant by high-power ultrasonic (probe) dispersion of GNPs in distilled water. The concentrations of nanofluids were maintained at 0.025, 0.05, 0.075, and 0.1 wt.% for three different specific surface areas of 300, 500, and 750 m2/g. Transmission electron microscopy image shows that the suspensions are homogeneous and most of the materials have been well dispersed. The stability of nanofluid was investigated using a UV-visible spectrophotometer in a time span of 600 h, and zeta potential after dispersion had been investigated to elucidate its role on dispersion characteristics. The rheological properties of GNP nanofluids approach Newtonian and non-Newtonian behaviors where viscosity decreases linearly with the rise of temperature. The thermal conductivity results show that the dispersed nanoparticles can always enhance the thermal conductivity of the base fluid, and the highest enhancement was obtained to be 27.64% in the concentration of 0.1 wt.% of GNPs with a specific surface area of 750 m2/g. Electrical conductivity of the GNP nanofluids shows a significant enhancement by dispersion of GNPs in distilled water. This novel type of nanofluids shows outstanding potential for replacements as advanced heat transfer fluids in medium temperature applications including solar collectors and heat exchanger systems.

371 citations


Cited by
More filters
01 Jan 2007

1,932 citations

Journal ArticleDOI
TL;DR: In this paper, the current status of the intrinsic mechanical properties of the graphene-family of materials along with the preparation and properties of bulk graphene-based nanocomposites is thoroughly examined.

1,531 citations

01 Jan 2016
TL;DR: The numerical heat transfer and fluid flow is universally compatible with any devices to read and is available in the authors' digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you for reading numerical heat transfer and fluid flow. Maybe you have knowledge that, people have search numerous times for their favorite books like this numerical heat transfer and fluid flow, but end up in infectious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some malicious virus inside their computer. numerical heat transfer and fluid flow is available in our digital library an online access to it is set as public so you can get it instantly. Our books collection spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the numerical heat transfer and fluid flow is universally compatible with any devices to read.

1,531 citations

Journal ArticleDOI
TL;DR: In this article, the state of the art of phase change materials for thermal energy storage applications is reviewed and an insight into recent efforts to develop new phase change material with enhanced performance and safety.

1,399 citations