scispace - formally typeset
Author

Heng Li

Bio: Heng Li is a academic researcher from Harvard University. The author has contributed to research in topic(s): Genome & Sequence assembly. The author has an hindex of 66, co-authored 171 publication(s) receiving 131824 citation(s). Previous affiliations of Heng Li include Dana Corporation & Wellcome Trust Sanger Institute.

...read more

Topics: Genome, Sequence assembly, Reference genome ...read more
Papers
  More

Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTP352
Heng Li1, Bob Handsaker2, Alec Wysoker2, T. J. Fennell2  +5 moreInstitutions (4)
01 Aug 2009-Bioinformatics
Abstract: Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: [email protected]

...read more

Topics: Variant Call Format (62%), Stockholm format (61%), FASTQ format (56%) ...read more

35,747 Citations


Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTP324
Heng Li1, Richard Durbin1Institutions (1)
01 Jul 2009-Bioinformatics
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

...read more

Topics: Hybrid genome assembly (54%), Sequence assembly (53%), 2 base encoding (52%) ...read more

35,234 Citations


Open accessJournal ArticleDOI: 10.1038/NATURE15393
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

...read more

Topics: 1000 Genomes Project (62%), Exome sequencing (59%), Genome-wide association study (59%) ...read more

9,821 Citations


Open accessPosted ContentDOI: 10.6084/M9.FIGSHARE.963153.V1
16 Mar 2013-arXiv: Genomics
Abstract: Summary: BWA-MEM is a new alignment algorithm for aligning sequence reads or long query sequences against a large reference genome such as human. It automatically chooses between local and end-to-end alignments, supports paired-end reads and performs chimeric alignment. The algorithm is robust to sequencing errors and applicable to a wide range of sequence lengths from 70bp to a few megabases. For mapping 100bp sequences, BWA-MEM shows better performance than several state-of-art read aligners to date. Availability and implementation: BWA-MEM is implemented as a component of BWA, which is available at this http URL. Contact: hengli@broadinstitute.org

...read more

Topics: Sequence assembly (59%), Reference genome (52%)

6,090 Citations


Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTR509
Heng Li1Institutions (1)
01 Nov 2011-Bioinformatics
Abstract: Motivation: Most existing methods for DNA sequence analysis rely on accurate sequences or genotypes. However, in applications of the next-generation sequencing (NGS), accurate genotypes may not be easily obtained (e.g. multi-sample low-coverage sequencing or somatic mutation discovery). These applications press for the development of new methods for analyzing sequence data with uncertainty. Results: We present a statistical framework for calling SNPs, discovering somatic mutations, inferring population genetical parameters and performing association tests directly based on sequencing data without explicit genotyping or linkage-based imputation. On real data, we demonstrate that our method achieves comparable accuracy to alternative methods for estimating site allele count, for inferring allele frequency spectrum and for association mapping. We also highlight the necessity of using symmetric datasets for finding somatic mutations and confirm that for discovering rare events, mismapping is frequently the leading source of errors. Availability: http://samtools.sourceforge.net Contact: hengli@broadinstitute.org

...read more

Topics: Imputation (genetics) (56%), Association mapping (55%), Population (53%) ...read more

3,609 Citations


Cited by
  More

Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTP352
Heng Li1, Bob Handsaker2, Alec Wysoker2, T. J. Fennell2  +5 moreInstitutions (4)
01 Aug 2009-Bioinformatics
Abstract: Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: [email protected]

...read more

Topics: Variant Call Format (62%), Stockholm format (61%), FASTQ format (56%) ...read more

35,747 Citations


Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTP324
Heng Li1, Richard Durbin1Institutions (1)
01 Jul 2009-Bioinformatics
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

...read more

Topics: Hybrid genome assembly (54%), Sequence assembly (53%), 2 base encoding (52%) ...read more

35,234 Citations


Open accessJournal ArticleDOI: 10.1038/NMETH.1923
01 Apr 2012-Nature Methods
Abstract: As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

...read more

27,973 Citations


Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTU170
Anthony Bolger1, Marc Lohse1, Bjoern Usadel1Institutions (1)
01 Aug 2014-Bioinformatics
Abstract: Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: ed.nehcaa-htwr.1oib@ledasu Supplementary information: Supplementary data are available at Bioinformatics online.

...read more

26,464 Citations


Open access
28 Jul 2005-
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

...read more

18,940 Citations


Performance
Metrics

Author's H-index: 66

No. of papers from the Author in previous years
YearPapers
20221
202123
202024
201917
20188
20176

Top Attributes

Show by:

Author's top 5 most impactful journals

bioRxiv

26 papers, 312 citations

Bioinformatics

20 papers, 80.6K citations

Nature

15 papers, 24.5K citations

arXiv: Genomics

9 papers, 6.3K citations

Nature Genetics

6 papers, 1.7K citations

Network Information
Related Authors (5)
Guoqing Li

19 papers, 17K citations

95% related
Jingxiang Li

15 papers, 16.9K citations

94% related
Honglong Wu

34 papers, 17.4K citations

93% related
Min Jian

17 papers, 24.9K citations

93% related
Ruibang Luo

90 papers, 29.6K citations

92% related