scispace - formally typeset
Search or ask a question
Author

Henri Bounameaux

Other affiliations: University of Montpellier, King's College London, Geneva College  ...read more
Bio: Henri Bounameaux is an academic researcher from University of Geneva. The author has contributed to research in topics: Pulmonary embolism & Deep vein. The author has an hindex of 75, co-authored 367 publications receiving 33221 citations. Previous affiliations of Henri Bounameaux include University of Montpellier & King's College London.


Papers
More filters
Journal ArticleDOI
TL;DR: Rivaroxaban offers a simple, single-drug approach to the short-term and continued treatment of venous thrombosis that may improve the benefit-to-risk profile of anticoagulation.
Abstract: BACKGROUND: Rivaroxaban, an oral factor Xa inhibitor, may provide a simple, fixed-dose regimen for treating acute deep-vein thrombosis (DVT) and for continued treatment, without the need for laboratory monitoring. METHODS: We conducted an open-label, randomized, event-driven, noninferiority study that compared oral rivaroxaban alone (15 mg twice daily for 3 weeks, followed by 20 mg once daily) with subcutaneous enoxaparin followed by a vitamin K antagonist (either warfarin or acenocoumarol) for 3, 6, or 12 months in patients with acute, symptomatic DVT. In parallel, we carried out a double-blind, randomized, event-driven superiority study that compared rivaroxaban alone (20 mg once daily) with placebo for an additional 6 or 12 months in patients who had completed 6 to 12 months of treatment for venous thromboembolism. The primary efficacy outcome for both studies was recurrent venous thromboembolism. The principal safety outcome was major bleeding or clinically relevant nonmajor bleeding in the initial-treatment study and major bleeding in the continued-treatment study. RESULTS: The study of rivaroxaban for acute DVT included 3449 patients: 1731 given rivaroxaban and 1718 given enoxaparin plus a vitamin K antagonist. Rivaroxaban had noninferior efficacy with respect to the primary outcome (36 events [2.1%], vs. 51 events with enoxaparin-vitamin K antagonist [3.0%]; hazard ratio, 0.68; 95% confidence interval [CI], 0.44 to 1.04; P<0.001). The principal safety outcome occurred in 8.1% of the patients in each group. In the continued-treatment study, which included 602 patients in the rivaroxaban group and 594 in the placebo group, rivaroxaban had superior efficacy (8 events [1.3%], vs. 42 with placebo [7.1%]; hazard ratio, 0.18; 95% CI, 0.09 to 0.39; P<0.001). Four patients in the rivaroxaban group had nonfatal major bleeding (0.7%), versus none in the placebo group (P=0.11). CONCLUSIONS: Rivaroxaban offers a simple, single-drug approach to the short-term and continued treatment of venous thrombosis that may improve the benefit-to-risk profile of anticoagulation. (Funded by Bayer Schering Pharma and Ortho-McNeil; ClinicalTrials.gov numbers, NCT00440193 and NCT00439725.).

2,743 citations

Journal ArticleDOI
TL;DR: A new prediction rule is derived that is entirely based on clinical variables and is independent of physicians' implicit judgment by using a large multicenter cohort of patients admitted to the emergency department for clinically suspected pulmonary embolism.
Abstract: To improve diagnosis of pulmonary embolism (PE), the authors constructed a simple scoring system to estimate the probability of PE. Clinical predictors included age, previous venous thromboembolism...

918 citations

Journal ArticleDOI
TL;DR: Pulmonary embolism and deep vein thrombosis of the legs is discussed and several novel oral anticoagulant drugs are in development, which could replace vitamin K antagonists and heparins in many patients.

804 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In patients with atrial fibrillation, rivaroxaban was noninferior to warfarin for the prevention of stroke or systemic embolism and there was no significant between-group difference in the risk of major bleeding, although intracranial and fatal bleeding occurred less frequently in the rivroxaban group.
Abstract: Methods In a double-blind trial, we randomly assigned 14,264 patients with nonvalvular atrial fibrillation who were at increased risk for stroke to receive either rivaroxaban (at a daily dose of 20 mg) or dose-adjusted warfarin. The per-protocol, as-treated primary analysis was designed to determine whether rivaroxaban was noninferior to warfarin for the primary end point of stroke or systemic embolism. Results In the primary analysis, the primary end point occurred in 188 patients in the rivaroxaban group (1.7% per year) and in 241 in the warfarin group (2.2% per year) (hazard ratio in the rivaroxaban group, 0.79; 95% confidence interval [CI], 0.66 to 0.96; P<0.001 for noninferiority). In the intention-to-treat analysis, the primary end point occurred in 269 patients in the rivaroxaban group (2.1% per year) and in 306 patients in the warfarin group (2.4% per year) (hazard ratio, 0.88; 95% CI, 0.74 to 1.03; P<0.001 for noninferiority; P = 0.12 for superiority). Major and nonmajor clinically relevant bleeding occurred in 1475 patients in the rivaroxaban group (14.9% per year) and in 1449 in the warfarin group (14.5% per year) (hazard ratio, 1.03; 95% CI, 0.96 to 1.11; P = 0.44), with significant reductions in intracranial hemorrhage (0.5% vs. 0.7%, P = 0.02) and fatal bleeding (0.2% vs. 0.5%, P = 0.003) in the rivaroxaban group. Conclusions In patients with atrial fibrillation, rivaroxaban was noninferior to warfarin for the prevention of stroke or systemic embolism. There was no significant between-group difference in the risk of major bleeding, although intracranial and fatal bleeding occurred less frequently in the rivaroxaban group. (Funded by Johnson & Johnson and Bayer; ROCKET AF ClinicalTrials.gov number, NCT00403767.)

7,716 citations

Journal ArticleDOI
TL;DR: This document summarizes current research, plans, and recommendations for future research, as well as providing a history of the field and some of the techniques used, currently in use, at the National Institutes of Health.
Abstract: Jeffrey L. Anderson, MD, FACC, FAHA, Chair Jonathan L. Halperin, MD, FACC, FAHA, Chair-Elect Nancy M. Albert, PhD, RN, FAHA Biykem Bozkurt, MD, PhD, FACC, FAHA Ralph G. Brindis, MD, MPH, MACC Mark A. Creager, MD, FACC, FAHA[#][1] Lesley H. Curtis, PhD, FAHA David DeMets, PhD[#][1] Robert A

6,967 citations

Journal ArticleDOI
TL;DR: The current guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation are based on the findings of the ESC Task Force on 12 March 2015.
Abstract: ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation : The Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC).

6,866 citations

Journal ArticleDOI
TL;DR: Despite an early loss of glycemic differences, a continued reduction in microvascular risk and emergent risk reductions for myocardial infarction and death from any cause were observed during 10 years of post-trial follow-up.
Abstract: From the Diabetes Trials Unit (R.R.H., S.K.P., M.A.B.), the Division of Public Health and Primary Health Care (H.A.W.N.), and the National Institute of Health Re- search (NIHR) School for Primary Care Research (H.A.W.N.), Oxford Centre for Diabetes, Endocrinology, and Metabo- lism (R.R.H., S.K.P., M.A.B., D.R.M., H.A.W.N.); and the NIHR Oxford Bio- medical Research Centre (R.R.H., D.R.M., H.A.W.N.) — both in Oxford, United Kingdom. Address reprint requests to Dr. Holman at the Diabetes Trials Unit, Ox- ford Centre for Diabetes, Endocrinology, and Metabolism, Churchill Hospital, Head- ington, Oxford OX3 7LJ, United Kingdom, or at rury.holman@dtu.ox.ac.uk. Background During the United Kingdom Prospective Diabetes Study (UKPDS), patients with type 2 diabetes mellitus who received intensive glucose therapy had a lower risk of microvascular complications than did those receiving conventional dietary therapy. We conducted post-trial monitoring to determine whether this improved glucose con- trol persisted and whether such therapy had a long-term effect on macrovascular outcomes. Methods Of 5102 patients with newly diagnosed type 2 diabetes, 4209 were randomly assigned to receive either conventional therapy (dietary restriction) or intensive therapy (either sulfonylurea or insulin or, in overweight patients, metformin) for glucose control. In post-trial monitoring, 3277 patients were asked to attend annual UKPDS clinics for 5 years, but no attempts were made to maintain their previously assigned thera- pies. Annual questionnaires were used to follow patients who were unable to attend the clinics, and all patients in years 6 to 10 were assessed through questionnaires. We examined seven prespecified aggregate clinical outcomes from the UKPDS on an intention-to-treat basis, according to previous randomization categories. Results Between-group differences in glycated hemoglobin levels were lost after the first year. In the sulfonylurea-insulin group, relative reductions in risk persisted at 10 years for any diabetes-related end point (9%, P = 0.04) and microvascular disease (24%, P = 0.001), and risk reductions for myocardial infarction (15%, P = 0.01) and death from any cause (13%, P = 0.007) emerged over time, as more events occurred. In the metformin group, significant risk reductions persisted for any diabetes-relat- ed end point (21%, P = 0.01), myocardial infarction (33%, P = 0.005), and death from any cause (27%, P = 0.002). Conclusions Despite an early loss of glycemic differences, a continued reduction in microvascu- lar risk and emergent risk reductions for myocardial infarction and death from any cause were observed during 10 years of post-trial follow-up. A continued benefit after metformin therapy was evident among overweight patients. (UKPDS 80; Current Controlled Trials number, ISRCTN75451837.)

6,565 citations

Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations