scispace - formally typeset
Search or ask a question
Author

Henri Cohen

Bio: Henri Cohen is an academic researcher from Université du Québec à Montréal. The author has contributed to research in topics: Algebraic number field & Quartic function. The author has an hindex of 43, co-authored 188 publications receiving 10759 citations. Previous affiliations of Henri Cohen include Paris Descartes University & French Institute for Research in Computer Science and Automation.


Papers
More filters
Book
01 Jan 1993
TL;DR: The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods.
Abstract: A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.

2,842 citations

BookDOI
19 Jul 2005
TL;DR: The introduction to Public-Key Cryptography explains the development of algorithms for computing Discrete Logarithms and their applications in Pairing-Based Cryptography and its applications in Fast Arithmetic Hardware Smart Cards.
Abstract: Preface Introduction to Public-Key Cryptography Mathematical Background Algebraic Background Background on p-adic Numbers Background on Curves and Jacobians Varieties Over Special Fields Background on Pairings Background on Weil Descent Cohomological Background on Point Counting Elementary Arithmetic Exponentiation Integer Arithmetic Finite Field Arithmetic Arithmetic of p-adic Numbers Arithmetic of Curves Arithmetic of Elliptic Curves Arithmetic of Hyperelliptic Curves Arithmetic of Special Curves Implementation of Pairings Point Counting Point Counting on Elliptic and Hyperelliptic Curves Complex Multiplication Computation of Discrete Logarithms Generic Algorithms for Computing Discrete Logarithms Index Calculus Index Calculus for Hyperelliptic Curves Transfer of Discrete Logarithms Applications Algebraic Realizations of DL Systems Pairing-Based Cryptography Compositeness and Primality Testing-Factoring Realizations of DL Systems Fast Arithmetic Hardware Smart Cards Practical Attacks on Smart Cards Mathematical Countermeasures Against Side-Channel Attacks Random Numbers-Generation and Testing References

1,113 citations

Book ChapterDOI
01 Jan 1984

516 citations

Journal Article
TL;DR: A new coordinate system and a new mixed coordinates strategy are proposed, which significantly improves on the number of basic operations needed for elliptic curve exponentiation.
Abstract: Elliptic curve cryptosystems, proposed by Koblitz ([12]) and Miller ([16]), can be constructed over a smaller field of definition than the ElGamal cryptosystems ([6]) or the RSA cryptosystems ([20]) This is why elliptic curve cryptosystems have begun to attract notice In this paper, we investigate efficient elliptic curve exponentiation We propose a new coordinate system and a new mixed coordinates strategy, which significantly improves on the number of basic operations needed for elliptic curve exponentiation

487 citations

Journal ArticleDOI
TL;DR: For each integer r > 1, the authors defines an arithmetic function H(r, N) which for r = 1 is the class number of (not necessarily primitive) quadratic forms of discriminant N and for r > 2 the function is a modular form of weight r + 1/2 on Fo(4 ).
Abstract: For each integer r > 1 we will define an arithmetic function H(r, N) which for r = 1 is the class number of (not necessarily primitive) quadratic forms of discriminant N and for r > 1 is essentially the value of ~K(r) where K = ~ ( ] / ~ ) . For r > 2 the function ~N>_0 H(r, N)e 2~i~ is a modular form of weight r + 1/2 on Fo(4 ). This implies numerous identities involving H(r, N). The analogous formulas for r = 1 (which do not follow from the methods of this paper) are classical "class number relations" of Kronecker, Hurwitz and others, as well as certain generalizations coming from the Selberg-Eichler trace formula and from recent work of Hirzebruch-Zagier. One of the tools used is of independent interest: given two modular f o r m s f a n d 9, there are certain bilinear expressions in the derivatives o f f and 9 which are again modular forms.

431 citations


Cited by
More filters
Book
01 Jan 1996
TL;DR: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols.
Abstract: From the Publisher: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols; more than 200 tables and figures; more than 1,000 numbered definitions, facts, examples, notes, and remarks; and over 1,250 significant references, including brief comments on each paper.

13,597 citations

Book
01 Jan 2004
TL;DR: This guide explains the basic mathematics, describes state-of-the-art implementation methods, and presents standardized protocols for public-key encryption, digital signatures, and key establishment, as well as side-channel attacks and countermeasures.
Abstract: After two decades of research and development, elliptic curve cryptography now has widespread exposure and acceptance. Industry, banking, and government standards are in place to facilitate extensive deployment of this efficient public-key mechanism. Anchored by a comprehensive treatment of the practical aspects of elliptic curve cryptography (ECC), this guide explains the basic mathematics, describes state-of-the-art implementation methods, and presents standardized protocols for public-key encryption, digital signatures, and key establishment. In addition, the book addresses some issues that arise in software and hardware implementation, as well as side-channel attacks and countermeasures. Readers receive the theoretical fundamentals as an underpinning for a wealth of practical and accessible knowledge about efficient application. Features & Benefits: * Breadth of coverage and unified, integrated approach to elliptic curve cryptosystems * Describes important industry and government protocols, such as the FIPS 186-2 standard from the U.S. National Institute for Standards and Technology * Provides full exposition on techniques for efficiently implementing finite-field and elliptic curve arithmetic* Distills complex mathematics and algorithms for easy understanding* Includes useful literature references, a list of algorithms, and appendices on sample parameters, ECC standards, and software toolsThis comprehensive, highly focused reference is a useful and indispensable resource for practitioners, professionals, or researchers in computer science, computer engineering, network design, and network data security.

2,893 citations

Book
24 Oct 2001
TL;DR: Digital Watermarking covers the crucial research findings in the field and explains the principles underlying digital watermarking technologies, describes the requirements that have given rise to them, and discusses the diverse ends to which these technologies are being applied.
Abstract: Digital watermarking is a key ingredient to copyright protection. It provides a solution to illegal copying of digital material and has many other useful applications such as broadcast monitoring and the recording of electronic transactions. Now, for the first time, there is a book that focuses exclusively on this exciting technology. Digital Watermarking covers the crucial research findings in the field: it explains the principles underlying digital watermarking technologies, describes the requirements that have given rise to them, and discusses the diverse ends to which these technologies are being applied. As a result, additional groundwork is laid for future developments in this field, helping the reader understand and anticipate new approaches and applications.

2,849 citations

Book
01 Jan 1993
TL;DR: The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods.
Abstract: A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.

2,842 citations

Journal ArticleDOI
TL;DR: An efficient closest point search algorithm, based on the Schnorr-Euchner (1995) variation of the Pohst (1981) method, is implemented and is shown to be substantially faster than other known methods.
Abstract: In this semitutorial paper, a comprehensive survey of closest point search methods for lattices without a regular structure is presented. The existing search strategies are described in a unified framework, and differences between them are elucidated. An efficient closest point search algorithm, based on the Schnorr-Euchner (1995) variation of the Pohst (1981) method, is implemented. Given an arbitrary point x /spl isin/ /spl Ropf//sup m/ and a generator matrix for a lattice /spl Lambda/, the algorithm computes the point of /spl Lambda/ that is closest to x. The algorithm is shown to be substantially faster than other known methods, by means of a theoretical comparison with the Kannan (1983, 1987) algorithm and an experimental comparison with the Pohst (1981) algorithm and its variants, such as the Viterbo-Boutros (see ibid. vol.45, p.1639-42, 1999) decoder. Modifications of the algorithm are developed to solve a number of related search problems for lattices, such as finding a shortest vector, determining the kissing number, computing the Voronoi (1908)-relevant vectors, and finding a Korkine-Zolotareff (1873) reduced basis.

1,616 citations