scispace - formally typeset
Search or ask a question
Author

Henrik Liljenfeldt

Bio: Henrik Liljenfeldt is an academic researcher from Oak Ridge National Laboratory. The author has contributed to research in topics: Spent nuclear fuel & Burnup. The author has an hindex of 8, co-authored 19 publications receiving 168 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The Next Generation Safeguards Initiative (NGSI) -Spent Fuel (SF) project as discussed by the authors has developed a set of measurement campaigns at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB).
Abstract: The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. The results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

34 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data, and quantify the effect of uncertainties in the nuclear data and selected manufacturing and operation parameters for a typical BWR fuel assembly.

33 citations

Journal ArticleDOI
TL;DR: In this article, the SCALE nuclear analysis code system capabilities in predicting decay heat for commercial used fuel applications has been performed using decay heat measurements for fuel assemblies irradiated in pressurized and boiling water reactors.

27 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focused on spectrally resolved gamma-ray measurements performed on a diverse set of 50 spent fuel assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water Reactor (BWR), and these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter.
Abstract: A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137 Cs, 154 Eu, and 134 Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

26 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discuss the requirements to achieve safe and efficient enclosure of spent nuclear fuel assemblies, including providing adequate radiation shielding, maintaining sub criticality, and achieving reliable and efficient decay heat removal process throughout the entire storage period.

35 citations

Journal ArticleDOI
TL;DR: The Next Generation Safeguards Initiative (NGSI) -Spent Fuel (SF) project as discussed by the authors has developed a set of measurement campaigns at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB).
Abstract: The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. The results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

34 citations

22 Dec 2016
TL;DR: The Fifth Worldwide Review (WWR-5) as discussed by the authors reviewed the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and summarized challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories.
Abstract: Author(s): Faybishenko, Boris; Birkholzer, Jens; Sassani, David; Swift, Peter | Abstract: The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included in the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.

34 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data, and quantify the effect of uncertainties in the nuclear data and selected manufacturing and operation parameters for a typical BWR fuel assembly.

33 citations

Journal ArticleDOI
TL;DR: In this article, the impact of the nuclear data (cross sections, neutron emission and spectra) on different quantities for spent nuclear fuels (SNF) from Swiss power plants: activities, decay heat, neutron and gamma sources and isotopic vectors.
Abstract: This paper presents a study of the impact of the nuclear data (cross sections, neutron emission and spectra) on different quantities for spent nuclear fuels (SNF) from Swiss power plants: activities, decay heat, neutron and gamma sources and isotopic vectors. Realistic irradiation histories are considered using validated core follow-up models based on CASMO and SIMULATE. Two Pressurized and one Boiling Water Reactors (PWR and BWR) are considered over a large number of operated cycles. All the assemblies at the end of the cycles are studied, being reloaded or finally discharged, allowing spanning over a large range of exposure (from 4 to 60 MWd/kgU for ≃9200 assembly-cycles). Both UO2 and MOX fuels were used during the reactor cycles, with enrichments from 1.9 to 4.7% for the UO2 and 2.2 to 5.8% Pu for the MOX. The SNF characteristics presented in this paper are calculated with the SNF code. The calculated uncertainties, based on the ENDF/B-VII.1 library are obtained using a simple Monte Carlo sampling method. It is demonstrated that the impact of nuclear data is relatively important (e.g. up to 17% for the decay heat), showing the necessity to consider them for safety analysis of the SNF handling and disposal.

26 citations