scispace - formally typeset
Search or ask a question
Author

Henrik Moller

Bio: Henrik Moller is an academic researcher from University of Otago. The author has contributed to research in topics: Puffinus & Population. The author has an hindex of 38, co-authored 132 publications receiving 6928 citations.


Papers
More filters
Journal ArticleDOI
Sandra Díaz1, Sebsebe Demissew2, Julia Carabias3, Carlos Alfredo Joly4, Mark Lonsdale, Neville Ash5, Anne Larigauderie, Jay Ram Adhikari, Salvatore Arico6, András Báldi, Ann M. Bartuska7, Ivar Andreas Baste, Adem Bilgin, Eduardo S. Brondizio8, Kai M. A. Chan9, Viviana E. Figueroa, Anantha Kumar Duraiappah, Markus Fischer, Rosemary Hill10, Thomas Koetz, Paul Leadley11, Philip O'b. Lyver12, Georgina M. Mace13, Berta Martín-López14, Michiko Okumura5, Diego Pacheco, Unai Pascual15, Edgar Selvin Pérez, Belinda Reyers16, Eva Roth17, Osamu Saito18, Robert J. Scholes19, Nalini Sharma5, Heather Tallis20, Randolph R. Thaman21, Robert T. Watson22, Tetsukazu Yahara23, Zakri Abdul Hamid, Callistus Akosim, Yousef S. Al-Hafedh24, Rashad Allahverdiyev, Edward Amankwah, T. Stanley Asah25, Zemede Asfaw2, Gabor Bartus26, Anathea L. Brooks6, Jorge Caillaux27, Gemedo Dalle, Dedy Darnaedi, Amanda Driver (Sanbi), Gunay Erpul28, Pablo Escobar-Eyzaguirre, Pierre Failler29, Ali Moustafa Mokhtar Fouda, Bojie Fu30, Haripriya Gundimeda31, Shizuka Hashimoto32, Floyd Homer, Sandra Lavorel33, Gabriela Lichtenstein34, William Armand Mala35, Wadzanayi Mandivenyi, Piotr Matczak36, Carmel Mbizvo, Mehrasa Mehrdadi, Jean Paul Metzger37, Jean Bruno Mikissa38, Henrik Moller39, Harold A. Mooney40, Peter J. Mumby41, Harini Nagendra42, Carsten Nesshöver43, Alfred Oteng-Yeboah44, György Pataki45, Marie Roué, Jennifer Rubis6, Maria Schultz46, Peggy Smith47, Rashid Sumaila9, Kazuhiko Takeuchi18, Spencer Thomas, Madhu Verma48, Youn Yeo-Chang49, Diana Zlatanova50 
National University of Cordoba1, Addis Ababa University2, National Autonomous University of Mexico3, State University of Campinas4, United Nations Environment Programme5, UNESCO6, United States Department of Agriculture7, Indiana University8, University of British Columbia9, Commonwealth Scientific and Industrial Research Organisation10, University of Paris-Sud11, Landcare Research12, University College London13, Autonomous University of Madrid14, University of Cambridge15, Council for Scientific and Industrial Research16, University of Southern Denmark17, United Nations University18, Virginia Tech College of Natural Resources and Environment19, The Nature Conservancy20, University of the South Pacific21, University of East Anglia22, Kyushu University23, King Abdulaziz City for Science and Technology24, University of Washington25, Budapest University of Technology and Economics26, Environmental Law Institute27, Ankara University28, University of Portsmouth29, Chinese Academy of Sciences30, Indian Institute of Technology Bombay31, Kyoto University32, Joseph Fourier University33, National Scientific and Technical Research Council34, University of Yaoundé35, Polish Academy of Sciences36, University of São Paulo37, École Normale Supérieure38, University of Otago39, Stanford University40, University of Queensland41, Azim Premji University42, Helmholtz Centre for Environmental Research - UFZ43, University of Ghana44, Corvinus University of Budapest45, Stockholm University46, Lakehead University47, Indian Institute of Forest Management48, Seoul National University49, Sofia University50
TL;DR: The first public product of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) is its Conceptual Framework as discussed by the authors, which will underpin all IPBES functions and provide structure and comparability to the syntheses that will produce at different spatial scales, on different themes, and in different regions.

1,585 citations

Journal ArticleDOI
TL;DR: In this article, a combination of traditional ecological knowledge and science to monitor populations can greatly assist co-management for sustainable customary wildlife harvests by indigenous peoples, which can not only build partnership and community consensus, but also allow indigenous wildlife users to critically evaluate scientific predictions on their own terms and test sustainability using their own forms of adaptive management.
Abstract: Using a combination of traditional ecological knowledge and science to monitor populations can greatly assist co-management for sustainable customary wildlife harvests by indigenous peoples. Case studies from Canada and New Zealand emphasize that, although traditional monitoring methods may often be imprecise and qualitative, they are nevertheless valuable because they are based on observations over long time periods, incorporate large sample sizes, are inexpensive, invite the participation of harvesters as researchers, and sometimes incorporate subtle multivariate cross checks for environmental change. A few simple rules suggested by traditional knowledge may produce good management outcomes consistent with fuzzy logic thinking. Science can sometimes offer better tests of potential causes of population change by research on larger spatial scales, precise quantification, and evaluation of population change where no harvest occurs. However, science is expensive and may not always be trusted or welcomed by customary users of wildlife. Short scientific studies in which traditional monitoring methods are calibrated against population abundance could make it possible to mesh traditional ecological knowledge with scientific inferences of prey population dynamics. This paper analyzes the traditional monitoring techniques of catch per unit effort and body condition. Combining scientific and traditional monitoring methods can not only build partnership and community consensus, but also, and more importantly, allow indigenous wildlife users to critically evaluate scientific predictions on their own terms and test sustainability using their own forms of adaptive management.

937 citations

Journal ArticleDOI
TL;DR: The extraordinary transequatorial postbreeding migrations of a small seabird, the sooty shearwater, obtained with miniature archival tags that log data for estimating position, dive depth, and ambient temperature reveal that shearwaters fly across the entire Pacific Ocean in a figure-eight pattern while traveling 64,037 ± 9,779 km roundtrip, the longest animal migration ever recorded electronically.
Abstract: Electronic tracking tags have revolutionized our understanding of broad-scale movements and habitat use of highly mobile marine animals, but a large gap in our knowledge still remains for a wide range of small species. Here, we report the extraordinary transequatorial postbreeding migrations of a small seabird, the sooty shearwater, obtained with miniature archival tags that log data for estimating position, dive depth, and ambient temperature. Tracks (262 ± 23 days) reveal that shearwaters fly across the entire Pacific Ocean in a figure-eight pattern while traveling 64,037 ± 9,779 km roundtrip, the longest animal migration ever recorded electronically. Each shearwater made a prolonged stopover in one of three discrete regions off Japan, Alaska, or California before returning to New Zealand through a relatively narrow corridor in the central Pacific Ocean. Transit rates as high as 910 ± 186 km·day−1 were recorded, and shearwaters accessed prey resources in both the Northern and Southern Hemisphere’s most productive waters from the surface to 68.2 m depth. Our results indicate that sooty shearwaters integrate oceanic resources throughout the Pacific Basin on a yearly scale. Sooty shearwater populations today are declining, and because they operate on a global scale, they may serve as an important indicator of climate change and ocean health.

488 citations

Journal ArticleDOI
TL;DR: In this paper, the authors apply this approach to sustainable farming by conceptualizing a farm as being part of a set of systems spanning several spatial scales and including agro-ecological, economic and political-social domains.
Abstract: Research on sustainability in agriculture often focuses on reducing the environmental impacts of production systems. However, environmentally friendly production methods may not be sufficient to ensure the long-term economic and social sustainability of a farm. Taking a systems approach to sustainable farming, we turn to resilience thinking with its focus on the interdependence of social and ecological systems. We apply this approach to farming by conceptualizing a farm as being part of a set of systems spanning several spatial scales and including agro-ecological, economic and political-social domains. These subsystems interact and are subjected to their own complex dynamics. Within such a complex adaptive system, farm sustainability can only be achieved through adaptability and change. To be ready for the inevitable periods of turbulent change, a farmer needs to retain diversity and redundancy to ensure adaptability. Resilience is thus more likely to emerge when farmers hone the capacity to transform th...

365 citations

Journal ArticleDOI
TL;DR: In this paper, a review and principal components analysis of 35 New Zealand agricultural statistics from the past 40 years identified two main patterns of change in land use, production, and farm inputs.

288 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors explore the social dimension that enables adaptive ecosystem-based management, focusing on experiences of adaptive governance of social-ecological systems during periods of abrupt change and investigates social sources of renewal and reorganization.
Abstract: ▪ Abstract We explore the social dimension that enables adaptive ecosystem-based management. The review concentrates on experiences of adaptive governance of social-ecological systems during periods of abrupt change (crisis) and investigates social sources of renewal and reorganization. Such governance connects individuals, organizations, agencies, and institutions at multiple organizational levels. Key persons provide leadership, trust, vision, meaning, and they help transform management organizations toward a learning environment. Adaptive governance systems often self-organize as social networks with teams and actor groups that draw on various knowledge systems and experiences for the development of a common understanding and policies. The emergence of “bridging organizations” seem to lower the costs of collaboration and conflict resolution, and enabling legislation and governmental policies can support self-organization while framing creativity for adaptive comanagement efforts. A resilient social-eco...

4,495 citations

Journal ArticleDOI
TL;DR: Active adaptive management and governance of resilience will be required to sustain desired ecosystem states and transform degraded ecosystems.
Abstract: ▪ Abstract We review the evidence of regime shifts in terrestrial and aquatic environments in relation to resilience of complex adaptive ecosystems and the functional roles of biological diversity in this context. The evidence reveals that the likelihood of regime shifts may increase when humans reduce resilience by such actions as removing response diversity, removing whole functional groups of species, or removing whole trophic levels; impacting on ecosystems via emissions of waste and pollutants and climate change; and altering the magnitude, frequency, and duration of disturbance regimes. The combined and often synergistic effects of those pressures can make ecosystems more vulnerable to changes that previously could be absorbed. As a consequence, ecosystems may suddenly shift from desired to less desired states in their capacity to generate ecosystem services. Active adaptive management and governance of resilience will be required to sustain desired ecosystem states and transform degraded ecosystems...

3,297 citations

Journal ArticleDOI
14 Sep 2007-Science
TL;DR: Synthesis of six case studies from around the world shows that couplings between human and natural systems vary across space, time, and organizational units and have legacy effects on present conditions and future possibilities.
Abstract: Integrated studies of coupled human and natural systems reveal new and complex patterns and processes not evident when studied by social or natural scientists separately. Synthesis of six case studies from around the world shows that couplings between human and natural systems vary across space, time, and organizational units. They also exhibit nonlinear dynamics with thresholds, reciprocal feedback loops, time lags, resilience, heterogeneity, and surprises. Furthermore, past couplings have legacy effects on present conditions and future possibilities.

2,890 citations

Journal Article
TL;DR: In this paper, a test based on two conserved CHD (chromo-helicase-DNA-binding) genes that are located on the avian sex chromosomes of all birds, with the possible exception of the ratites (ostriches, etc.).

2,554 citations

Journal ArticleDOI
TL;DR: Through successive rounds of learning and problem solving, learning networks can incorporate new knowledge to deal with problems at increasingly larger scales, with the result that maturing co- management arrangements become adaptive co-management in time.

2,040 citations