scispace - formally typeset
Search or ask a question
Author

Henrique C. DePaoli

Bio: Henrique C. DePaoli is an academic researcher from Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. The author has contributed to research in topics: Cell growth & Cell cycle. The author has an hindex of 5, co-authored 10 publications receiving 276 citations. Previous affiliations of Henrique C. DePaoli include University of California, San Diego & Oak Ridge National Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that localized auxin biosynthesis in roots is required for normal root development and that auxin transported from shoots is not sufficient for supporting root elongation and root gravitropic responses.
Abstract: Auxin plays an essential role in root development. It has been a long-held dogma that auxin required for root development is mainly transported from shoots into roots by polarly localized auxin transporters. However, it is known that auxin is also synthesized in roots. Here we demonstrate that a group of YUCCA (YUC) genes, which encode the rate-limiting enzymes for auxin biosynthesis, plays an essential role in Arabidopsis root development. Five YUC genes (YUC3, YUC5, YUC7, YUC8 and YUC9) display distinct expression patterns during root development. Simultaneous inactivation of the five YUC genes (yucQ mutants) leads to the development of very short and agravitropic primary roots. The yucQ phenotypes are rescued by either adding 5 nM of the natural auxin, IAA, in the growth media or by expressing a YUC gene in the roots of yucQ. Interestingly, overexpression of a YUC gene in shoots in yucQ causes the characteristic auxin overproduction phenotypes in shoots; however, the root defects of yucQ are not rescued. Our data demonstrate that localized auxin biosynthesis in roots is required for normal root development and that auxin transported from shoots is not sufficient for supporting root elongation and root gravitropic responses.

182 citations

Journal ArticleDOI
TL;DR: The TOBEST represents the most extensive survey of gene expression in the stigmas/styles of wet stigma plants, and the results indicate that wet and dry stigma/styles express common as well as distinct genes in preparation for the pollination process.
Abstract: The success of plant reproduction depends on pollen-pistil interactions occurring at the stigma/style. These interactions vary depending on the stigma type: wet or dry. Tobacco (Nicotiana tabacum) represents a model of wet stigma, and its stigmas/styles express genes to accomplish the appropriate functions. For a large-scale study of gene expression during tobacco pistil development and preparation for pollination, we generated 11,216 high-quality expressed sequence tags (ESTs) from stigmas/styles and created the TOBEST database. These ESTs were assembled in 6,177 clusters, from which 52.1% are pistil transcripts/genes of unknown function. The 21 clusters with the highest number of ESTs (putative higher expression levels) correspond to genes associated with defense mechanisms or pollen-pistil interactions. The database analysis unraveled tobacco sequences homologous to the Arabidopsis (Arabidopsis thaliana) genes involved in specifying pistil identity or determining normal pistil morphology and function. Additionally, 782 independent clusters were examined by macroarray, revealing 46 stigma/style preferentially expressed genes. Real-time reverse transcription-polymerase chain reaction experiments validated the pistil-preferential expression for nine out of 10 genes tested. A search for these 46 genes in the Arabidopsis pistil data sets demonstrated that only 11 sequences, with putative equivalent molecular functions, are expressed in this dry stigma species. The reverse search for the Arabidopsis pistil genes in the TOBEST exposed a partial overlap between these dry and wet stigma transcriptomes. The TOBEST represents the most extensive survey of gene expression in the stigmas/styles of wet stigma plants, and our results indicate that wet and dry stigmas/styles express common as well as distinct genes in preparation for the pollination process.

58 citations

Journal ArticleDOI
TL;DR: Recent progress in computational modelling as applied to plant photosynthesis is reviewed, with attention to the requirements for CAM, and recent advances in synthetic biology tool development.
Abstract: To meet future food and energy security needs, which are amplified by increasing population growth and reduced natural resource availability, metabolic engineering efforts have moved from manipulating single genes/proteins to introducing multiple genes and novel pathways to improve photosynthetic efficiency in a more comprehensive manner. Biochemical carbon-concentrating mechanisms such as crassulacean acid metabolism (CAM), which improves photosynthetic, water-use, and possibly nutrient-use efficiency, represent a strategic target for synthetic biology to engineer more productive C3 crops for a warmer and drier world. One key challenge for introducing multigene traits like CAM onto a background of C3 photosynthesis is to gain a better understanding of the dynamic spatial and temporal regulatory events that underpin photosynthetic metabolism. With the aid of systems and computational biology, vast amounts of experimental data encompassing transcriptomics, proteomics, and metabolomics can be related in a network to create dynamic models. Such models can undergo simulations to discover key regulatory elements in metabolism and suggest strategic substitution or augmentation by synthetic components to improve photosynthetic performance and water-use efficiency in C 3 crops. Another key challenge in the application of synthetic biology to photosynthesis research is to develop efficient systems for multigene assembly and stacking. Here, we review recent progress in computational modelling as applied to plant photosynthesis, with attention to the requirements for CAM, and recent advances in synthetic biology tool development. Lastly, we discuss possible options for multigene pathway construction in plants with an emphasis on CAM-into-C3 engineering.

52 citations

Journal ArticleDOI
TL;DR: The results revealed that SCI1 is a novel tissue-specific gene that controls cell proliferation/differentiation, probably as a component of a developmental signal transduction pathway.
Abstract: Summary •A cDNA encoding a small lysine-rich protein of unknown function was identified in a tobacco (Nicotiana tabacum) stigma/style suppression subtractive hybridization cDNA library. After its characterization, the corresponding gene was designated stigma/style cell cycle inhibitor 1 (SCI1). •Fluorescence microscopy with an SCI1-GFP protein fusion demonstrated its nuclear localization, which was confined to the interchromatic region. Real-time RT-PCR and in situ hybridization experiments showed that SCI1 is stigma/style-specific and developmentally regulated. •SCI1 RNAi knockdown and overexpression plants had stigmas/styles with remarkably enlarged and reduced areas, respectively, which was attributable to differences in cell numbers. These results indicate that SCI1 is a tissue-specific negative cell cycle regulator. •The differences in cell division had an effect on the timing of the differentiation of the stigmatic papillar cells, suggesting that their differentiation is coupled to stigma cell divisions. This is consistent with a role for SCI1 in triggering differentiation through cell proliferation control. Our results revealed that SCI1 is a novel tissue-specific gene that controls cell proliferation/differentiation, probably as a component of a developmental signal transduction pathway.

14 citations

Journal ArticleDOI
TL;DR: The results show that pollination is a stimulus capable of triggering female gametophyte development in immature tobacco flowers and suggests the existence of a yet undefined signal sensed by the pistil.
Abstract: In Nicotiana tabacum, female gametophytes are not fully developed at anthesis, but flower buds pollinated 12 h before anthesis produce mature embryo sacs. We investigated several pollination-associated parameters in N. tabacum flower buds to determine the developmental timing of important events in preparation for successful fertilization. First, we performed hand pollinations in flowers from stages 4 to 11 to study at which developmental stage pollination would produce fruits. A Peroxtesmo test was performed to correlate peroxidase activity on the stigma surface, indicative of stigma receptivity, with fruit set. Pollen tube growth and female gametophyte development were microscopically analyzed in pistils of different developmental stages. Fruits were obtained only after pollinations of flower buds at late stage 7 and older; fruit weight and seed germination capacity increased as the developmental stage of the pollinated flower approached anthesis. Despite positive peroxidase activity and pollen tube growth, pistils at stages 5 and 6 were unable to produce fruits. At late stage 7, female gametophytes were undergoing first mitotic division. After 24 h, female gametophytes of unpollinated pistils were still in the end of the first division, whereas those of pollinated pistils showed egg cells. RT-qPCR assay showed that the expression of the NtEC1 gene, a marker of egg cell development, is considerably higher in pollinated late stage 7 ovaries compared with unpollinated ovaries. To test whether ethylene is the signal eliciting female gametophyte maturation, the expression of ACC synthase was examined in unpollinated and pollinated stage 6 and late stage 7 stigmas/styles. Pollination induced NtACS expression in stage 6 pistils, which are unable to produce fruits. Our results show that pollination is a stimulus capable of triggering female gametophyte development in immature tobacco flowers and suggests the existence of a yet undefined signal sensed by the pistil.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This study finds that the cells in Arabidopsis root are highly heterogeneous in their transcriptomes and identifies the expression signatures of intermediate states during root cell differentiation at single-cell resolution.

247 citations

Journal ArticleDOI
TL;DR: The identification of [(+)-7-iso-JA-L-Ile] as the active biological hormonal form of jasmonate fills the greatest gap in knowledge about the signaling mechanism that is responsible for the activation of downstream genes in the jasMonate-signaling cascade.
Abstract: The plant hormones jasmonic acid and methyl jasmonate, along with their intermediate compounds, produced in the octadecanoid pathway, are important signaling molecules that are collectively called jasmonates. These are widespread in the plant kingdom and play crucial roles in biotic/abiotic stress responses, as well as in processes related to plant growth and development. Recently, it has been shown that jasmonates are also involved in reproductive processes. We present the most recent findings related to the biosynthesis, regulation and signaling mechanisms of jasmonates. Additionally, we discuss the identification of [(+)-7-iso-JA-L-Ile] as the active biological hormonal form of jasmonate; this fills the greatest gap in our knowledge about the signaling mechanism that is responsible for the activation of downstream genes in the jasmonate-signaling cascade. The identification of several Arabidopsis thaliana mutants was crucial to the elucidation of the signaling mechanisms involved in jasmonate-mediated responses. Finally, the involvement of jasmonates in the reproductive process of Nicotiana tabacum L. is briefly discussed, since some of the main enzymes of the jasmonic acid biosynthesis pathway were identified in a stigma/style expressed sequence tag database (TOBEST) of this Solanaceae species.

213 citations

Journal ArticleDOI
TL;DR: This study systematically addressed the role of local auxin biosynthesis in plant development and responses to the stress phytohormone ethylene by manipulating spatiotemporal patterns of WEI8 and revealed that local auxIn biosynthesis and transport act synergistically and are individually dispensable for root meristem maintenance.

202 citations

Journal ArticleDOI
TL;DR: To exploit the potential of CAM crops and CAM bioengineering, it will be necessary to elucidate the evolution, genomic features, and regulatory mechanisms of CAM, which has potential for high returns on research investment.
Abstract: Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO2 uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food, feed, and bioenergy crops. An improved understanding of CAM has potential for high returns on research investment. To exploit the potential of CAM crops and CAM bioengineering, it will be necessary to elucidate the evolution, genomic features, and regulatory mechanisms of CAM. Field trials and predictive models will be required to assess the productivity of CAM crops, while new synthetic biology approaches need to be developed for CAM engineering. Infrastructure will be needed for CAM model systems, field trials, mutant collections, and data management.

184 citations

Journal ArticleDOI
TL;DR: In this article, the recent progress in auxin biosynthesis research is discussed and the paradigm shift in recognizing the important roles of local auxIn biosynthesis in plant biology is discussed.
Abstract: It has been a dominant dogma in plant biology that the self-organizing polar auxin transport system is necessary and sufficient to generate auxin maxima and minima that are essential for almost all aspects of plant growth and development. However, in the past few years, it has become clear that local auxin biosynthesis is required for a suite of developmental processes, including embryogenesis, endosperm development, root development, and floral initiation and patterning. Moreover, it was discovered that local auxin biosynthesis maintains optimal plant growth in response to environmental signals, including light, temperature, pathogens, and toxic metals. In this article, I discuss the recent progress in auxin biosynthesis research and the paradigm shift in recognizing the important roles of local auxin biosynthesis in plant biology.

181 citations