scispace - formally typeset
Search or ask a question
Author

Henrique Trindade

Bio: Henrique Trindade is an academic researcher from University of Trás-os-Montes and Alto Douro. The author has contributed to research in topics: Slurry & Soil water. The author has an hindex of 25, co-authored 82 publications receiving 1896 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain, and on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice.
Abstract: Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice.

468 citations

Journal ArticleDOI
TL;DR: This review focuses on the nutritional and anti-nutritional composition of Vigna unguiculata L. Walp, an emerging crop all over the world intended to provide a rational support for the development of valuable foods and feeds of increased commercial value.
Abstract: The growing awareness of the relevance of food composition for human health has increased the interest of the inclusion of high proportions of fruits and vegetables in diets. To reach the objective of more balanced diets, an increased consumption of legumes, which constitutes a sustainable source of essential nutrients, particularly low-cost protein, is of special relevance. However, the consumption of legumes also entails some constraints that need to be addressed to avoid a deleterious impact on consumers' wellbeing and health. The value of legumes as a source of nutrients depends on a plethora of factors, including genetic characteristics, agro-climatic conditions, and postharvest management that modulate the dietary effect of edible seeds and vegetative material. Thus, more comprehensive information regarding composition, especially their nutritional and anti-nutritional compounds, digestibility, and alternative processing procedures is essential. These were the challenges to write this review, which focusses on the nutritional and anti-nutritional composition of Vigna unguiculata L. Walp, an emerging crop all over the world intended to provide a rational support for the development of valuable foods and feeds of increased commercial value. © 2016 Society of Chemical Industry.

166 citations

Journal ArticleDOI
TL;DR: In this paper, an automated laboratory soil incubation system enabled the effects on gaseous emissions from a soil to be quantified accurately, when amended with slurry plus a nitrification inhibitor: dicyandiamide (DCD), or 3,4-dimethylpyrazole phosphate (DMPP).
Abstract: An automated laboratory soil incubation system enabled the effects on gaseous emissions from a soil to be quantified accurately, when amended with slurry plus a nitrification inhibitor: dicyandiamide (DCD), or 3,4-dimethylpyrazole phosphate (DMPP). Nitrification inhibitors applied with slurry under simulated Portuguese conditions were very efficient in reducing N2O emission, and did not increase CH4 emissions significantly, when the soil was predominantly aerobic. The inhibitors were also indirectly effective in reducing N2O emissions due to denitrification during a subsequent anaerobic phase. All gaseous emissions followed strong diurnal patterns that were positively correlated with soil temperature and obeyed a Q10=2 relationship. The widespread use of DCD and DMPP inhibitors with slurry applied to Portuguese soils could have the potential to reduce N2O emissions from this source by ten- to 20-fold.

134 citations

Journal ArticleDOI
TL;DR: Of the 88 metabolites studied, proline, galactinol, and a quercetin derivative responded the most to drought as highlighted by multivariate analyses, and their correlations with yield indicated beneficial effects, suggesting a more conservative strategy to cope with drought in the aerial parts.
Abstract: Plants usually tolerate drought by producing organic solutes, which can either act as compatible osmolytes for maintaining turgor, or radical scavengers for protecting cellular functions. However, these two properties of organic solutes are often indistinguishable during stress progression. This study looked at individualizing properties of osmotic adjustment versus osmoprotection in plants, using cowpea as the model species. Two cultivars were grown in well-watered soil, drought conditions, or drought followed by rewatering through fruit formation. Osmoadaptation was investigated in leaves and roots using photosynthetic traits, water homoeostasis, inorganic ions, and primary and secondary metabolites. Multifactorial analyses indicated allocation of high quantities of amino acids, sugars, and proanthocyanidins into roots, presumably linked to their role in growth and initial stress perception. Physiological and metabolic changes developed in parallel and drought/recovery responses showed a progressive acclimation of the cowpea plant to stress. Of the 88 metabolites studied, proline, galactinol, and a quercetin derivative responded the most to drought as highlighted by multivariate analyses, and their correlations with yield indicated beneficial effects. These metabolites accumulated differently in roots, but similarly in leaves, suggesting a more conservative strategy to cope with drought in the aerial parts. Changes in these compounds roughly reflected energy investment in protective mechanisms, although the ability of plants to adjust osmotically through inorganic ions uptake could not be discounted.

111 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the farm-gate nutrient balances (N, P and K) in three groups of dairy farms from NW Portugal during three consecutive years, 2003, 2004 and 2005, and concluded that advisory campaigns among farmers are efficient to reduce the nutrient surpluses.

77 citations


Cited by
More filters
01 Jan 1993

2,271 citations

Journal ArticleDOI
TL;DR: In this paper, the authors hypothesized that biochar additions to agricultural soils in the southeastern U.S. coastal plain region have meager soil fertility characteristics because of their sandy textures, acidic pH values, kaolinitic clays, low cation exchange capacities, and diminutive soil organic carbon contents.
Abstract: Agricultural soils in the southeastern U.S. Coastal Plain region have meager soil fertility characteristics because of their sandy textures, acidic pH values, kaolinitic clays, low cation exchange capacities, and diminutive soil organic carbon contents. We hypothesized that biochar additions

1,134 citations

01 Jan 2009
TL;DR: In this article, the authors provide an overview of the ecological status of agricultural systems across the European Union in the light of recent policy changes, concluding that despite many adjustments to agricultural policy, intensification of production in some regions and concurrent abandonment in others remain the major threat to the ecology of agro-ecosystems impairing the state of soil, water and air and reducing biological diversity in agricultural landscapes.
Abstract: The impacts of agricultural land use are far-reaching and extend to areas outside production. This paper provides an overview of the ecological status of agricultural systems across the European Union in the light of recent policy changes. It builds on the previous review of 2001 devoted to the impacts of agricultural intensification in Western Europe. The focus countries are the UK, The Netherlands, Boreal and Baltic countries, Portugal, Hungary and Romania, representing a geographical spread across Europe, but additional reference is made to other countries. Despite many adjustments to agricultural policy, intensification of production in some regions and concurrent abandonment in others remain the major threat to the ecology of agro-ecosystems impairing the state of soil, water and air and reducing biological diversity in agricultural landscapes. The impacts also extend to surrounding terrestrial and aquatic systems through water and aerial contamination and development of agricultural infrastructures (e.g. dams and irrigation channels). Improvements are also documented regionally, such as successful support of farmland species, and improved condition of watercourses and landscapes. This was attributed to agricultural policy targeted at the environment, improved environmental legislation, and new market opportunities. Research into ecosystem services associated with agriculture may provide further pressure to develop policy that is targeted at their continuous provisioning, fostering motivation of land managers to continue to protect and enhance them.

1,053 citations

Journal ArticleDOI
TL;DR: This paper provides an overview of the ecological status of agricultural systems across the European Union in the light of recent policy changes, and builds on the previous review of 2001 devoted to the impacts of agricultural intensification in Western Europe.

983 citations

Journal ArticleDOI
TL;DR: The total of these enhanced sinks, 124 TgN/yr, is less than the human-enhanced inputs to the land surface, indicating areas of needed additional attention to global nitrogen biogeochemistry.
Abstract: This article provides a synthesis of literature values to trace the fate of 150 Tg/yr anthropogenic nitrogen applied by humans to the Earth's land surface. Approximately 9 TgN/yr may be accumulating in the terrestrial biosphere in pools with residence times of ten to several hundred years. Enhanced fluvial transport of nitrogen in rivers and percolation to groundwater accounts for approximately 35 and 15 TgN/yr, respectively. Greater denitrification in terrestrial soils and wetlands may account for the loss of approximately 17 TgN/yr from the land surface, calculated by a compilation of data on the fraction of N(2)O emitted to the atmosphere and the current global rise of this gas in the atmosphere. A recent estimate of atmospheric transport of reactive nitrogen from land to sea (NO(x) and NH(x)) accounts for 48 TgN/yr. The total of these enhanced sinks, 124 TgN/yr, is less than the human-enhanced inputs to the land surface, indicating areas of needed additional attention to global nitrogen biogeochemistry. Policy makers should focus on increasing nitrogen-use efficiency in fertilization, reducing transport of reactive N to rivers and groundwater, and maximizing denitrification to its N(2) endproduct.

835 citations