scispace - formally typeset
Search or ask a question
Author

Herbert Edelsbrunner

Bio: Herbert Edelsbrunner is an academic researcher from Institute of Science and Technology Austria. The author has contributed to research in topics: Delaunay triangulation & Voronoi diagram. The author has an hindex of 84, co-authored 377 publications receiving 33877 citations. Previous affiliations of Herbert Edelsbrunner include University of Illinois at Urbana–Champaign & Duke University.


Papers
More filters
Proceedings Article
01 Jan 1996
TL;DR: Pockets can be efficiently constructed by an algorithm based on alpha complexes as discussed by the authors, which is implemented and applied to proteins with known three-dimensional conformations and can be used to identify identifiable regions in the complement space.
Abstract: The shape of a protein is important for its functions. This includes the location and size of identifiable regions in its complement space. We formally define pockets as regions in the complement with limited accessibility from the outside. Pockets can be efficiently constructed by an algorithm based on alpha complexes. The algorithm is implemented and applied to proteins with known three-dimensional conformations.

37 citations

Journal Article
TL;DR: A number of rendering algorithms in computer graphics sort three-dimensional objects by depth and assume that there is no cycle that makes the sorting impossible, but the problem of estimating how many such cuts are always sufficient is addressed.
Abstract: A number of rendering algorithms in computer graphics sort three-dimensional objects by depth and assume that there is no cycle that makes the sorting impossible. One way to resolve the problem caused by cycles is to cut the objects into smaller pieces. The problem of estimating how many such cuts are always sufficient is addressed. A few related algorithmic and combinatorial geometry problems are considered. >

36 citations

Proceedings ArticleDOI
01 Dec 2004
TL;DR: An efficient algorithm is presented for generating a small set of coarse alignments between interacting proteins using meaningful features on their surfaces that can serve as input to local improvement algorithms that allow for protein flexibility.
Abstract: We present an efficient algorithm for generating a small set of coarse alignments be- tween interacting proteins using meaningful features on their surfaces. The proteins are treated as rigid bodies, but the results are more generally useful as the produced configurations can serve as input to local improvement algorithms that allow for protein flexibility. We apply our algorithm to a diverse set of protein complexes from the Protein Data Bank, demonstrating the effectivity of our algorithm, both for bound and for unbound protein docking problems.

36 citations

Proceedings ArticleDOI
01 May 1990
TL;DR: It is proved that for any set of S of n points in the plane and 3-α triangles spanned by the points of S there exists a point contained in at least n of the triangles.
Abstract: We prove that for any set S of n points in the plane and n3-α triangles spanned by the points of S there exists a point (not necessarily of S) contained in at least n3-3α/(512 log5 n) of the triangles. This implies that any set of n points in three-dimensional space defines at most 6.4n8/3 log5/3 n halving planes.

36 citations

Journal ArticleDOI
TL;DR: This work has developed general modeling software for a Cave Automatic Virtual Environment (CAVE), one of its applications is modeling 3D protein structures, generating both outside-in and inside-out views of geometric models.
Abstract: We have developed general modeling software for a Cave Automatic Virtual Environment (CAVE); one of its applications is modeling 3D protein structures, generating both outside-in and inside-out views of geometric models. An advantage of the CAVE over other virtual environments is that multiple viewers can observe the same scene at the same time and place. Our software is scalable-from high-end virtual environments such as the CAVE, to mid-range immersive desktop systems, down to low-end graphics workstations. In the current configuration, a parallel Silicon Graphics Power Challenge supercomputer architecture performs the computationally intensive construction of surface patches remotely, and sends the results through the I-WAY (Information Wide Area Year) using VBNS (Very-high-Bandwidth Network Systems) to the graphics machines that drive the CAVE and our graphics visualization software, Valvis (Virtual ALpha shapes VISualizer).

36 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The goals of the PDB are described, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource are described.
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

34,239 citations

Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Book
25 Oct 1999
TL;DR: This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Abstract: Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. *Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

20,196 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations