scispace - formally typeset
Search or ask a question
Author

Herbert Fleisch

Bio: Herbert Fleisch is an academic researcher from University of Bern. The author has contributed to research in topics: Bone resorption & Parathyroid hormone. The author has an hindex of 62, co-authored 229 publications receiving 16812 citations. Previous affiliations of Herbert Fleisch include Procter & Gamble & NewYork–Presbyterian Hospital.


Papers
More filters
Journal ArticleDOI
21 Oct 1994-Science
TL;DR: Results identify Fos as a key regulator of osteoclast-macrophage lineage determination in vivo and provide insights into the molecular mechanisms underlying metabolic bone diseases.
Abstract: Mice lacking the proto-oncogene c-fos develop the bone disease osteopetrosis. Fos mutant mice were found to have a block in the differentiation of bone-resorbing osteoclasts that was intrinsic to hematopoietic cells. Bone marrow transplantation rescued the osteopetrosis, and ectopic c-fos expression overcame this differentiation block. The lack of Fos also caused a lineage shift between osteoclasts and macrophages that resulted in increased numbers of bone marrow macrophages. These results identify Fos as a key regulator of osteoclast-macrophage lineage determination in vivo and provide insights into the molecular mechanisms underlying metabolic bone diseases.

1,212 citations

Journal ArticleDOI
TL;DR: A comparison study of the effects of calcification, bone resorption, and other effects on bone formation and noncalcified tissues in animals and humans using a model derived from animal toxicology and human adverse events.
Abstract: I. Introduction II. Chemistry III. Effects in Vivo A. Inhibition of calcification B. Inhibition of bone resorption C. Effects on bone formation D. Effects on noncalcified tissues IV. Mechanisms of Action A. Calcification B. Bone resorption C. Other effects V. Pharmacokinetics VI. Animal Toxicology and Human Adverse Events A. Animal toxicology B. Human adverse events VII. Conclusion

1,183 citations

Journal ArticleDOI
TL;DR: This review will deal with the mechanisms of action of bisphosphonates and in vitro results, as well as results both in animals and humans, will be integrated in an attempt to deduce the current state of the art.
Abstract: Because of its failure to act when given orally and its rapid hydrolysis when given parenterally, pyrophosphate was used therapeutically only in scintigraphy and against dental calculus. This prompted us to search for analogs that showed similar physicochemical activity but resisted enzymatic hydrolysis and, therefore, would not be degraded metabolically. The bisphosphonates fulfilled these conditions. This review will deal with the mechanisms of action of these compounds. In vitro results, as well as results both in animals and humans, will be integrated in an attempt to deduce the current state of the art. Various reviews have been published recently on bisphosphonates and may be consulted also for information on other aspects (8 ‐14). Since the literature in this field is plentiful, selective citation was necessary. Priority is given to papers dealing with the mechanisms of action. Since many papers often deal with the same finding, in most cases only the first ones are quoted. Subsequent papers are quoted only if they convey new knowledge.

1,087 citations

Journal ArticleDOI
01 Dec 1991-Drugs
TL;DR: By inhibiting bone resorption, these compounds correct hypercalcaemia and hypercalciuria, reduce pain, the occurrence of fractures, as well as the development of new osteolytic lesions, and in consequence improve the quality of life.
Abstract: The geminal bisphosphonates are a new class of drugs characterised by a P-C-P bond. Consequently, they are analogues of pyrophosphate, but are resistant to chemical and enzymatic hydrolysis. The bisphosphonates bind strongly to hydroxyapatite crystals and inhibit their formation and dissolution. This physicochemical effect leads in vivo to the prevention of soft tissue calcification and, in some instances, inhibition of normal calcification. The main effect is to inhibit bone resorption, but in contrast to the effect on mineralisation, the mechanism involved is cellular. These various effects vary greatly according to the structure of the individual bisphosphonate. The half-life of circulating bisphosphonates is very brief, in the order of minutes to hours. 20% to 50% of a given dose is taken up by the skeleton, the rest being excreted in the urine. The half-life in bone is far longer and depends upon the turnover rate of the skeleton itself. Bisphosphonates are very well tolerated; the relatively few adverse events that have been associated with their use are specific for each compound. Bisphosphonates have been used to treat various clinical conditions, namely ectopic calcification, ectopic bone formation, Paget's disease, osteoporosis and increased osteolysis of malignant origin. The three compounds commercially available for use in tumour-induced bone disease are in order of increasing potency, etidronate, clodronate and pamidronate. Most data have been obtained with the latter two agents. By inhibiting bone resorption, they correct hypercalcaemia and hypercalciuria, reduce pain, the occurrence of fractures, as well as the development of new osteolytic lesions, and in consequence improve the quality of life. In view of these actions, of their excellent tolerability and of the fact that they are active for relatively long periods, these compounds are, after rehydration, the drugs of choice in tumour-induced bone disease and an excellent auxiliary to the drugs used in oncology.

584 citations

Journal ArticleDOI
TL;DR: The studies suggest that circulating CSF-1 exclusively regulates both the F4/80+ cells in the liver, spleen and kidney and the MOMA-1+ metallophilic macrophages in the spleen.
Abstract: Colony stimulating factor-1 (CSF-1) regulates the survival, proliferation and differentiation of mononuclear phagocytes. The osteopetrotic (op/op) mutant mouse is devoid of CSF-1 due to an inactivating mutation in the CSF-1 gene and is deficient in several mononuclear phagocyte subpopulations. To analyze more fully the requirement for CSF-1 in the establishment and maintenance of mononuclear phagocytes, the postnatal development of cells bearing the macrophage marker antigens F4/80 and MOMA-1, in op/op mice and their normal (+/op or +/+) littermates, were studied during the first three months of life. In normal mice, maximum expression of tissue F4/80+ cells was generally correlated with the period of maximum organogenesis and/or cell turnover. Depending on the tissue, the F4/80+ cell density either decreased, transiently increased or gradually increased with age. In op/op mice, tissues that normally contain F4/80+ cells could be classified into those in which F4/80+ cells were absent and those in which the F4/80+ cell densities were either reduced, normal or initially normal then subsequently reduced. To assess which F4/80+ populations were regulated by circulating CSF-1 in normal mice, op/op mice in which the circulating CSF-1 concentration was restored to above normal levels by daily subcutaneous injection of human recombinant CSF-1 from day 3 were analyzed. These studies suggest that circulating CSF-1 exclusively regulates both the F4/80+ cells in the liver, spleen and kidney and the MOMA-1+ metallophilic macrophages in the spleen. Macrophages of the dermis, bladder, bone marrow and salivary gland, together with a subpopulation in the gut, were partially restored by circulating CSF-1, whereas macrophages of the muscle, tendon, periosteum, synovial membrane, adrenals and the macrophages intimately associated with the epithelia of the digestive tract, were not corrected by restoration of circulating CSF-1, suggesting that they are exclusively locally regulated by this growth factor. Langerhans cells, bone marrow monocytes and macrophages of the thymus and lymph nodes were not significantly affected by circulating CSF-1 nor decreased in op/op mice, consistent with their regulation by other growth factors. These results indicate that important differences exist among mononuclear phagocytes in their dependency on CSF-1 and the way in which CSF-1 is presented to them. They also suggest that the prevalent role of CSF-1 is to influence organogenesis and tissue turnover by stimulating the production of tissue macrophages with local trophic and/or scavenger (physiological) functions. Macrophages involved in inflammatory and immune (pathological) responses appear to be dependent on other factors for their ontogenesis and function.(ABSTRACT TRUNCATED AT 400 WORDS)

541 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob) found that the expression of 1,304 transcripts correlated significantly with body mass.
Abstract: Obesity alters adipose tissue metabolic and endocrine function and leads to an increased release of fatty acids, hormones, and proinflammatory molecules that contribute to obesity associated complications. To further characterize the changes that occur in adipose tissue with increasing adiposity, we profiled transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob). We found that the expression of 1,304 transcripts correlated significantly with body mass. Of the 100 most significantly correlated genes, 30% encoded proteins that are characteristic of macrophages and are positively correlated with body mass. Immunohistochemical analysis of perigonadal, perirenal, mesenteric, and subcutaneous adipose tissue revealed that the percentage of cells expressing the macrophage marker F4/80 (F4/80+) was significantly and positively correlated with both adipocyte size and body mass. Similar relationships were found in human subcutaneous adipose tissue stained for the macrophage antigen CD68. Bone marrow transplant studies and quantitation of macrophage number in adipose tissue from macrophage-deficient (Csf1op/op) mice suggest that these F4/80+ cells are CSF-1 dependent, bone marrow-derived adipose tissue macrophages. Expression analysis of macrophage and nonmacrophage cell populations isolated from adipose tissue demonstrates that adipose tissue macrophages are responsible for almost all adipose tissue TNF-alpha expression and significant amounts of iNOS and IL-6 expression. Adipose tissue macrophage numbers increase in obesity and participate in inflammatory pathways that are activated in adipose tissues of obese individuals.

8,902 citations

Journal ArticleDOI
15 May 2003-Nature
TL;DR: Discovery of the RANK signalling pathway in the osteoclast has provided insight into the mechanisms of osteoporosis and activation of bone resorption, and how hormonal signals impact bone structure and mass.
Abstract: Osteoclasts are specialized cells derived from the monocyte/macrophage haematopoietic lineage that develop and adhere to bone matrix, then secrete acid and lytic enzymes that degrade it in a specialized, extracellular compartment. Discovery of the RANK signalling pathway in the osteoclast has provided insight into the mechanisms of osteoclastogenesis and activation of bone resorption, and how hormonal signals impact bone structure and mass. Further study of this pathway is providing the molecular basis for developing therapeutics to treat osteoporosis and other diseases of bone loss.

5,760 citations

Journal ArticleDOI
18 Apr 1997-Cell
TL;DR: Data show that OPG can act as a soluble factor in the regulation of bone mass and imply a utility for OPG in the treatment of osteoporosis associated with increased osteoclast activity.

5,050 citations

Journal ArticleDOI
TL;DR: Recent studies have shown that monocyte heterogeneity is conserved in humans and mice, allowing dissection of its functional relevance: the different monocyte subsets seem to reflect developmental stages with distinct physiological roles, such as recruitment to inflammatory lesions or entry to normal tissues.
Abstract: Heterogeneity of the macrophage lineage has long been recognized and, in part, is a result of the specialization of tissue macrophages in particular microenvironments. Circulating monocytes give rise to mature macrophages and are also heterogeneous themselves, although the physiological relevance of this is not completely understood. However, as we discuss here, recent studies have shown that monocyte heterogeneity is conserved in humans and mice, allowing dissection of its functional relevance: the different monocyte subsets seem to reflect developmental stages with distinct physiological roles, such as recruitment to inflammatory lesions or entry to normal tissues. These advances in our understanding have implications for the development of therapeutic strategies that are targeted to modify particular subpopulations of monocytes.

4,861 citations

Journal ArticleDOI
01 Sep 2000-Science
TL;DR: Osteopetrotic mutants have provided a wealth of information about the genes that regulate the differentiation of osteoclasts and their capacity to resorb bone.
Abstract: Osteoporosis, a disease endemic in Western society, typically reflects an imbalance in skeletal turnover so that bone resorption exceeds bone formation. Bone resorption is the unique function of the osteoclast, and anti-osteoporosis therapy to date has targeted this cell. The osteoclast is a specialized macrophage polykaryon whose differentiation is principally regulated by macrophage colony-stimulating factor, RANK ligand, and osteoprotegerin. Reflecting integrin-mediated signals, the osteoclast develops a specialized cytoskeleton that permits it to establish an isolated microenvironment between itself and bone, wherein matrix degradation occurs by a process involving proton transport. Osteopetrotic mutants have provided a wealth of information about the genes that regulate the differentiation of osteoclasts and their capacity to resorb bone.

3,604 citations