scispace - formally typeset
Search or ask a question
Author

Herbert M. Lachman

Bio: Herbert M. Lachman is an academic researcher from Albert Einstein College of Medicine. The author has contributed to research in topics: Catechol-O-methyl transferase & Candidate gene. The author has an hindex of 41, co-authored 90 publications receiving 7669 citations. Previous affiliations of Herbert M. Lachman include University of Connecticut Health Center & Yeshiva University.


Papers
More filters
Journal ArticleDOI
TL;DR: The identification of a gentic marker associated with significant alterations in enzyme activity will facilitate the analysis of a possible role for the COMT gene in neuropsychiatric conditions in which abnormalities in catecholamine neurotransmission are believed to occur.
Abstract: Catechol-O-methyltransferase (COMT) inactivates catecholamines and catechol drugs such as L-DOPA. A common genetic polymorphism in humans is associated with a three-to-four-fold variation in COMT enzyme activity and is also associated with individual variation in COMT thermal instability. We now show that this is due to G-->A transition at codon 158 of the COMT gene that results in a valine to methionine substitution. The two alleles can be identified with a PCR-based restriction fragment length polymorphism analysis using the restriction enzyme Nla III. The identification of a gentic marker associated with significant alterations in enzyme activity will facilitate the analysis of a possible role for the COMT gene in neuropsychiatric conditions in which abnormalities in catecholamine neurotransmission are believed to occur, including mood disorders, schizophrenia, obsessive compulsive disorder, alcohol and substance abuse, and attention deficit hyperactivity disorder. In addition, this polymorphism may have pharmacogenetic significance in that it will help make it possible to identify patients who display altered metabolism of catechol drugs.

1,748 citations

Journal ArticleDOI
TL;DR: It is hypothesized that the COMT Met allele (associated with low enzyme activity) results in increased levels of tonic DA and reciprocal reductions in phasic DA in subcortical regions and increased D1 transmission cortically.

759 citations

Journal ArticleDOI
16 Aug 1984-Nature
TL;DR: The level of c-myc messenger RNA shows a rapid biphasic change in MEL cells induced to differentiate by dimethyl sulphoxide or hypoxanthine during the first few hours of the differentiation programme and require active protein synthesis, suggesting that changes in c- myc expression may be important in the irreversible commitment of M EL cells to terminal erythroid differentiation.
Abstract: The transforming gene of avian myelocytomatosis virus MC29, v-myc, causes a variety of malignancies in chickens. A cellular homologue, c-myc, has been implicated in B-cell malignancies in mice and humans but is also expressed in many normal cell types and may be important in the control of normal cell proliferation. c-myc is highly conserved in vertebrates. We have been investigating the relationship between c-myc expression and the terminal differentiation of cultured mouse erythroleukaemia (MEL) cells. We find that the level of c-myc messenger RNA shows a rapid biphasic change in MEL cells induced to differentiate by dimethyl sulphoxide or hypoxanthine. The changes occur during the first few hours of the differentiation programme and require active protein synthesis. These data suggest that changes in c-myc expression may be important in the irreversible commitment of MEL cells to terminal erythroid differentiation.

350 citations

Journal ArticleDOI
TL;DR: In a population of patients with VCFS, there is an apparent association between the low-activity allele, COMT158met, and the development of bipolar spectrum disorder, and in particular, a rapid-cycling form.
Abstract: Velo-cardio-facial-syndrome (VCFS) is a common congenital disorder associated with typical facial appearance, cleft palate, cardiac defects, and learning disabilities. The majority of patients have an interstitial deletion on chromosome 22q11. In addition to physical abnormalities, a variety of psychiatric illnesses have been reported in patients with VCFS, including schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. The psychiatric manifestations of VCFS could be due to haploin-sufficiency of a gene(s) within 22q11. One candidate that has been mapped to this region is catechol-O-methyltransferase (COMT). We recently identified a polymorphism in the COMT gene that leads to a valine-->methionine substitution at amino acid 158 of the membrane-bound form of the enzyme. Homozygosity for COMT158met leads to a 3-4-fold reduction in enzymatic activity, compared with homozygotes for COMT158val. We now report that in a population of patients with VCFS, there is an apparent association between the low-activity allele, COMT158met, and the development of bipolar spectrum disorder, and in particular, a rapid-cycling form.

310 citations

Journal ArticleDOI
TL;DR: The results suggest that the 5-HTT ‘S’ promoter polymorphism is associated with an increased risk for early onset alcoholism associated with antisocial personality disorder and impulsive, habitually violent behavior.
Abstract: A common 44-base pair insertion/deletion polymorphism in the promoter region of the human serotonin transporter (5-HTT) gene has been observed to be associated with affective illness and anxiety-related traits. This biallelic functional polymorphism, designated long (L) and short (S), affects 5-HTT gene expression since the S promoter is less active than the L promoter. Since there is strong evidence of a disturbance in brain serotonergic transmission among antisocial, impulsive, and violent type 2 alcoholic subjects, we decided to test the hypothesis that the frequency of the S allele, which is associated with reduced 5-HTT gene expression, is higher among habitually violent type 2 alcoholics when compared with race and gender-matched healthy controls and non-violent late-onset (type 1) alcoholics. The 5-HTT promoter genotype was determined by a PCR-based method in 114 late onset (type 1) non-violent alcoholics, 51 impulsive violent recidivistic offenders with early onset alcoholism (type 2), and 54 healthy controls. All index subjects and controls were white Caucasian males of Finnish origin. The S allele frequency was higher among type 2 alcoholics compared with type 1 alcoholics (chi2 = 4.86, P = 0.028) and healthy controls (chi2 = 8.24, P = 0.004). The odds ratio for SS genotype vs LL genotype was 3.90, 95% Cl 1.37-11.11, P = 0.011 when type 2 alcoholics were compared with healthy controls. The results suggest that the 5-HTT 'S' promoter polymorphism is associated with an increased risk for early onset alcoholism associated with antisocial personality disorder and impulsive, habitually violent behavior.

248 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Both chemical and biochemical factors that affect the absorption and metabolism of polyphenols are reviewed, with particular emphasis on flavonoid glycosides.
Abstract: The main dietary sources of polyphenols are reviewed, and the daily intake is calculated for a given diet containing some common fruits, vegetables and beverages. Phenolic acids account for about one third of the total intake and flavonoids account for the remaining two thirds. The most abundant flavonoids in the diet are flavanols (catechins plus proanthocyanidins), anthocyanins and their oxidation products. The main polyphenol dietary sources are fruit and beverages (fruit juice, wine, tea, coffee, chocolate and beer) and, to a lesser extent vegetables, dry legumes and cereals. The total intake is approximately 1 g/d. Large uncertainties remain due to the lack of comprehensive data on the content of some of the main polyphenol classes in food. Bioavailability studies in humans are discussed. The maximum concentration in plasma rarely exceeds 1 microM after the consumption of 10-100 mg of a single phenolic compound. However, the total plasma phenol concentration is probably higher due to the presence of metabolites formed in the body's tissues or by the colonic microflora. These metabolites are still largely unknown and not accounted for. Both chemical and biochemical factors that affect the absorption and metabolism of polyphenols are reviewed, with particular emphasis on flavonoid glycosides. A better understanding of these factors is essential to explain the large variations in bioavailability observed among polyphenols and among individuals.

3,394 citations

Journal ArticleDOI
24 Dec 1987-Cell
TL;DR: In this article, the major open reading frame encoded by this cDNA contains a short protein segment similar to a sequence present in the myc protein family, and the expression of one of these cDNAs transfected into C3H10T1/2 fibroblasts, where it is not normally expressed, is sufficient to convert them to stable myoblasts.

3,162 citations

Journal ArticleDOI
TL;DR: The balance in actions mediated by the two corticosteroid receptor types in these neurons appears critical for neuronal excitability, stress responsiveness, and behavioral adaptation and Dysregulation of this MR/GR balance brings neurons in a vulnerable state with consequences for regulation of the stress response and enhanced vulnerability to disease in genetically predisposed individuals.
Abstract: In this review, we have described the function of MR and GR in hippocampal neurons. The balance in actions mediated by the two corticosteroid receptor types in these neurons appears critical for neuronal excitability, stress responsiveness, and behavioral adaptation. Dysregulation of this MR/GR balance brings neurons in a vulnerable state with consequences for regulation of the stress response and enhanced vulnerability to disease in genetically predisposed individuals. The following specific inferences can be made on the basis of the currently available facts. 1. Corticosterone binds with high affinity to MRs predominantly localized in limbic brain (hippocampus) and with a 10-fold lower affinity to GRs that are widely distributed in brain. MRs are close to saturated with low basal concentrations of corticosterone, while high corticosterone concentrations during stress occupy both MRs and GRs. 2. The neuronal effects of corticosterone, mediated by MRs and GRs, are long-lasting, site-specific, and conditional. The action depends on cellular context, which is in part determined by other signals that can activate their own transcription factors interacting with MR and GR. These interactions provide an impressive diversity and complexity to corticosteroid modulation of gene expression. 3. Conditions of predominant MR activation, i.e., at the circadian trough at rest, are associated with the maintenance of excitability so that steady excitatory inputs to the hippocampal CA1 area result in considerable excitatory hippocampal output. By contrast, additional GR activation, e.g., after acute stress, generally depresses the CA1 hippocampal output. A similar effect is seen after adrenalectomy, indicating a U-shaped dose-response dependency of these cellular responses after the exposure to corticosterone. 4. Corticosterone through GR blocks the stress-induced HPA activation in hypothalamic CRH neurons and modulates the activity of the excitatory and inhibitory neural inputs to these neurons. Limbic (e.g., hippocampal) MRs mediate the effect of corticosterone on the maintenance of basal HPA activity and are of relevance for the sensitivity or threshold of the central stress response system. How this control occurs is not known, but it probably involves a steady excitatory hippocampal output, which regulates a GABA-ergic inhibitory tone on PVN neurons. Colocalized hippocampal GRs mediate a counteracting (i.e., disinhibitory) influence. Through GRs in ascending aminergic pathways, corticosterone potentiates the effect of stressors and arousal on HPA activation. The functional interaction between these corticosteroid-responsive inputs at the level of the PVN is probably the key to understanding HPA dysregulation associated with stress-related brain disorders. 5. Fine-tuning of HPA regulation occurs through MR- and GR-mediated effects on the processing of information in higher brain structures. Under healthy conditions, hippocampal MRs are involved in processes underlying integration of sensory information, interpretation of environmental information, and execution of appropriate behavioral reactions. Activation of hippocampal GRs facilitates storage of information and promotes elimination of inadequate behavioral responses. These behavioral effects mediated by MR and GR are linked, but how they influence endocrine regulation is not well understood. 6. Dexamethasone preferentially targets the pituitary in the blockade of stress-induced HPA activation. The brain penetration of this synthetic glucocorticoid is hampered by the mdr1a P-glycoprotein in the blood-brain barrier. Administration of moderate amounts of dexamethasone partially depletes the brain of corticosterone, and this has destabilizing consequences for excitability and information processing. 7. The set points of HPA regulation and MR/GR balance are genetically programmed, but can be reset by early life experiences involving mother-infant interaction. 8. (ABSTRACT TRUNCATED)

2,548 citations

Journal ArticleDOI
TL;DR: The data suggest that the COMT Val allele, because it increases prefrontal dopamine catabolism, impairs prefrontal cognition and physiology, and by this mechanism slightly increases risk for schizophrenia.
Abstract: Abnormalities of prefrontal cortical function are prominent features of schizophrenia and have been associated with genetic risk, suggesting that susceptibility genes for schizophrenia may impact on the molecular mechanisms of prefrontal function. A potential susceptibility mechanism involves regulation of prefrontal dopamine, which modulates the response of prefrontal neurons during working memory. We examined the relationship of a common functional polymorphism (Val(108/158) Met) in the catechol-O-methyltransferase (COMT) gene, which accounts for a 4-fold variation in enzyme activity and dopamine catabolism, with both prefrontally mediated cognition and prefrontal cortical physiology. In 175 patients with schizophrenia, 219 unaffected siblings, and 55 controls, COMT genotype was related in allele dosage fashion to performance on the Wisconsin Card Sorting Test of executive cognition and explained 4% of variance (P = 0.001) in frequency of perseverative errors. Consistent with other evidence that dopamine enhances prefrontal neuronal function, the load of the low-activity Met allele predicted enhanced cognitive performance. We then examined the effect of COMT genotype on prefrontal physiology during a working memory task in three separate subgroups (n = 11-16) assayed with functional MRI. Met allele load consistently predicted a more efficient physiological response in prefrontal cortex. Finally, in a family-based association analysis of 104 trios, we found a significant increase in transmission of the Val allele to the schizophrenic offspring. These data suggest that the COMT Val allele, because it increases prefrontal dopamine catabolism, impairs prefrontal cognition and physiology, and by this mechanism slightly increases risk for schizophrenia.

2,402 citations

Journal ArticleDOI
TL;DR: This review critically summarizes the neuropathology and genetics of schizophrenia, the relationship between them, and speculates on their functional convergence via an influence upon synaptic plasticity and the development and stabilization of cortical microcircuitry.
Abstract: This review critically summarizes the neuropathology and genetics of schizophrenia, the relationship between them, and speculates on their functional convergence. The morphological correlates of schizophrenia are subtle, and range from a slight reduction in brain size to localized alterations in the morphology and molecular composition of specific neuronal, synaptic, and glial populations in the hippocampus, dorsolateral prefrontal cortex, and dorsal thalamus. These findings have fostered the view of schizophrenia as a disorder of connectivity and of the synapse. Although attractive, such concepts are vague, and differentiating primary events from epiphenomena has been difficult. A way forward is provided by the recent identification of several putative susceptibility genes (including neuregulin, dysbindin, COMT, DISC1, RGS4, GRM3, and G72). We discuss the evidence for these and other genes, along with what is known of their expression profiles and biological roles in brain and how these may be altered in schizophrenia. The evidence for several of the genes is now strong. However, for none, with the likely exception of COMT, has a causative allele or the mechanism by which it predisposes to schizophrenia been identified. Nevertheless, we speculate that the genes may all converge functionally upon schizophrenia risk via an influence upon synaptic plasticity and the development and stabilization of cortical microcircuitry. NMDA receptor-mediated glutamate transmission may be especially implicated, though there are also direct and indirect links to dopamine and GABA signalling. Hence, there is a correspondence between the putative roles of the genes at the molecular and synaptic levels and the existing understanding of the disorder at the neural systems level. Characterization of a core molecular pathway and a 'genetic cytoarchitecture' would be a profound advance in understanding schizophrenia, and may have equally significant therapeutic implications.

1,879 citations