scispace - formally typeset
Search or ask a question
Author

Herbertz J

Bio: Herbertz J is an academic researcher. The author has contributed to research in topics: Electromagnetic field & Environmental exposure. The author has an hindex of 1, co-authored 1 publications receiving 754 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: The aim of this review is to provide a comprehensive survey of the technological state of the art in medical microrobots, to explore the potential impact of medical micRORobots and inspire future research in this field.
Abstract: Microrobots have the potential to revolutionize many aspects of medicine. These untethered, wirelessly controlled and powered devices will make existing therapeutic and diagnostic procedures less invasive and will enable new procedures never before possible. The aim of this review is threefold: first, to provide a comprehensive survey of the technological state of the art in medical microrobots; second, to explore the potential impact of medical microrobots and inspire future research in this field; and third, to provide a collection of valuable information and engineering tools for the design of medical microrobots.

1,580 citations

Journal ArticleDOI
TL;DR: This paper offers a survey of the concept of Wireless Body Area Networks, focusing on some applications with special interest in patient monitoring and the communication in a WBAN and its positioning between the different technologies.
Abstract: The increasing use of wireless networks and the constant miniaturization of electrical devices has empowered the development of Wireless Body Area Networks (WBANs). In these networks various sensors are attached on clothing or on the body or even implanted under the skin. The wireless nature of the network and the wide variety of sensors offer numerous new, practical and innovative applications to improve health care and the Quality of Life. The sensors of a WBAN measure for example the heartbeat, the body temperature or record a prolonged electrocardiogram. Using a WBAN, the patient experiences a greater physical mobility and is no longer compelled to stay in the hospital. This paper offers a survey of the concept of Wireless Body Area Networks. First, we focus on some applications with special interest in patient monitoring. Then the communication in a WBAN and its positioning between the different technologies is discussed. An overview of the current research on the physical layer, existing MAC and network protocols is given. Further, cross layer and quality of service is discussed. As WBANs are placed on the human body and often transport private data, security is also considered. An overview of current and past projects is given. Finally, the open research issues and challenges are pointed out.

1,077 citations

Journal ArticleDOI
TL;DR: The developed adult female model is the first of its kind in the world and both are the first Asian voxel models (representing average Japanese) that enable numerical evaluation of electromagnetic dosimetry at high frequencies of up to 3 GHz.
Abstract: With advances in computer performance, the use of high-resolution voxel models of the entire human body has become more frequent in numerical dosimetries of electromagnetic waves. Using magnetic resonance imaging, we have developed realistic high-resolution whole-body voxel models for Japanese adult males and females of average height and weight. The developed models consist of cubic voxels of 2 mm on each side; the models are segmented into 51 anatomic regions. The adult female model is the first of its kind in the world and both are the first Asian voxel models (representing average Japanese) that enable numerical evaluation of electromagnetic dosimetry at high frequencies of up to 3 GHz. In this paper, we will also describe the basic SAR characteristics of the developed models for the VHF/UHF bands, calculated using the finite-difference time-domain method.

732 citations

Patent
Stefan Parkvall1, Janne Peisa1, Gunnar Mildh1, Robert Baldemair1, Stefan Wager1, Jonas Kronander1, Karl Werner1, Richard Abrahamsson1, Ismet Aktas1, Peter Alriksson1, Junaid Ansari1, Ashraf Shehzad Ali1, Henrik Asplund1, Fredrik Athley1, Håkan Axelsson1, Joakim Axmon1, Johan Axnäs1, Kumar Balachandran1, Gunnar Bark1, Jan-Erik Berg1, Andreas Bergström1, Håkan Björkegren1, Nadia Brahmi1, Cagatay Capar1, Anders Carlsson1, Andreas Cedergren1, Mikael Coldrey1, Icaro L. J. da Silva1, Erik Dahlman1, Ali El Essaili1, Ulrika Engström1, Mårten Ericson1, Erik Eriksson1, Mikael Fallgren1, Fan Rui1, Gabor Fodor1, Pål Frenger1, Jonas Fridén1, Jonas Fröberg Olsson1, Anders Furuskär1, Johan Furuskog1, Virgile Garcia1, Ather Gattami1, Fredrik Gunnarsson1, Ulf Gustavsson1, Bo Hagerman1, Fredrik Harrysson1, Ning He1, Martin Hessler1, Kimmo Hiltunen1, Song-Nam Hong1, Dennis Hui1, Jörg Huschke1, Tim Irnich1, Sven Jacobsson1, Niklas Jaldén1, Simon Järmyr1, Zhiyuan Jiang1, Martin Johansson1, Niklas Johansson1, Du Ho Kang1, Eleftherios Karipidis1, Patrik Karlsson1, Ali S. Khayrallah1, Caner Kilinc1, Göran N. Klang1, Sara Landström1, Christina Larsson1, Gen Li1, Lars Lindbom1, Robert Lindgren1, Bengt Lindoff1, Fredrik Lindqvist1, Liu Jinhua1, Thorsten Lohmar1, Qianxi Lu1, Lars Manholm1, Ivana Maric1, Jonas Medbo1, Qingyu Miao1, Reza Moosavi1, Walter Müller1, Elena Myhre1, Karl Norrman1, Bengt-Erik Olsson1, Torgny Palenius1, Sven Petersson1, Jose Luis Pradas1, Mikael Prytz1, Olav Queseth1, Pradeepa Ramachandra1, Edgar Ramos1, Andres Reial1, Thomas Rimhagen1, Emil Ringh1, Patrik Rugeland1, Johan Rune1, Joachim Sachs1, Henrik Sahlin1, Vidit Saxena1, Nima Seifi1, Yngve Selén1, Eliane Semaan1, Sachin Sharma1, Shi Cong1, Johan Sköld1, Magnus Stattin1, Anders Stjernman1, Dennis Sundman1, Lars Sundström1, Miurel Isabel Tercero Vargas1, Claes Tidestav1, Sibel Tombaz1, Johan Torsner1, Hugo Tullberg1, Jari Vikberg1, Peter von Wrycza1, Thomas Walldeen1, Pontus Wallentin1, Wang Hai1, Ke Wang Helmersson1, Wang Jianfeng1, Yi-Pin Eric Wang1, Niclas Wiberg1, Wittenmark Emma1, Osman Nuri Can Yilmaz1, Ali A. Zaidi1, Zhang Zhan1, Zhang Zhang1, Zheng Yanli1 
13 May 2016
TL;DR: In this article, the uplink access configuration index is used to identify an uplink AP from among a predetermined plurality of AP configurations, and then the AP is transmitted to the wireless communications network according to the identified AP.
Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.

453 citations

Journal ArticleDOI
15 May 2014-Nature
TL;DR: It is shown that migratory birds are unable to use their magnetic compass in the presence of urban electromagnetic noise, which is a reproducible effect of anthropogenic electromagnetic noise on the behaviour of an intact vertebrate.
Abstract: Many migrating birds rely on the Earth's magnetic field for their sense of direction, although what mechanism they use to detect this extraordinarily weak field is unknown. Following the surprise observation that night-migratory songbirds (European robins) tested between autumn 2004 and autumn 2006 in wooden huts on the University of Oldenburg campus seemed unable to orient in the appropriate migratory direction, Henrik Mouritsen and colleagues performed controlled experiments to establish what was happening. They find that robins lose the ability to use the Earth's magnetic field when exposed to low-level AM electromagnetic noise between around 20 kz and 20 MHz, the kind of noise routinely generated by consumer electrical and electronic equipment. Interestingly, the magnetic component of this electromagnetic noise is a thousand times weaker than the lower exposure limits adopted in current World Health Organization (WHO) guidelines, yet it can disrupt the function of an entire sensory system in a higher vertebrate. The birds regain the ability to orient to the Earth's magnetic field when they are shielded from electromagnetic noise in the frequency range from 2 kHz to 5 MHz or when tested in a rural setting.

298 citations