scispace - formally typeset
Search or ask a question
Author

Herman Van Langenhove

Bio: Herman Van Langenhove is an academic researcher from Ghent University. The author has contributed to research in topics: Membrane bioreactor & Biofilter. The author has an hindex of 54, co-authored 266 publications receiving 11038 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of plasma driven catalysis for waste gas treatment characterized by higher energy efficiencies, high mineralization rates and low by-product formation is presented, and the synergy of combining plasma with catalysts can not only be attributed to the production of new reactive species but also affect catalyst properties such as a change in chemical composition, enhancement in surface area or change of catalytic structure.
Abstract: Plasma driven catalysis is a promising technology for waste gas treatment characterized by higher energy efficiencies, high mineralization rates and low by-product formation. The combination of heterogeneous catalysts with non-thermal plasma can be operated in two configurations: positioning the catalyst in the discharge zone (in-plasma catalysis) or downflow the discharge zone (post plasma catalysis). In a first part of the review, changes of plasma properties resulting from the introduction of catalyst material are discussed. It has been reported that discharge types can even change. Accordingly, it was reported that microdischarges are formed within the catalyst pores. Changing plasma characteristics can eventually result in enhanced production of new active species, increasing the oxidizing power of the plasma discharge. In a second part, it is discussed that plasma discharges also affect catalyst properties such as a change in chemical composition, enhancement in surface area or change of catalytic structure. These phenomena partially explain why catalyst adsorption kinetics of airborne pollutants are affected when exposed to plasma discharges. It is also reviewed that the synergy of combining plasma with catalysts can not only be attributed to the production of new reactive species. Also plasma photon emission or thermal hot-spots can initiate catalytic pollutant oxidation reactions. To conclude, an overview of recently published manuscripts concerning plasma catalysis for volatile organic compounds abatement is given. It is also discussed why heterogeneous plasma catalysis has high potential for the simultaneous abatement of NO x and hydrocarbons.

644 citations

Journal ArticleDOI
TL;DR: This review briefly examines the current technologies available for enhanced microalgal CO(2) fixation, and specifically explores the possibility of coupling wastewater treatment with micro algal growth for eventual production of biofuels and/or added-value products, with an emphasis on productivity.

634 citations

Journal ArticleDOI
TL;DR: This review shows that fluoroquinolone antibiotics have a wide spread use and that their behavior during wastewater treatment is complex with an incomplete removal, and that these biorecalcitrant compounds are present in different environmental matrices at potentially hazardous concentrations for the aquatic environment.

522 citations

Journal ArticleDOI
TL;DR: This review summarizes literature data from the past 5 years on new developments and/or applications of sample preparation methods for analysis of volatile organic compounds (VOC), mainly in air and water matrices.

316 citations

Journal ArticleDOI
TL;DR: In this article, a detailed analysis of a lithium mixed metal oxide battery recycling scenario, where cobalt and nickel are recovered and re-introduced into the battery production chain, is compared with a virgin production scenario.
Abstract: Rechargeable Li-ion battery applications in consumer products are fastly growing, resulting in increasing resources demand: it is for example estimated that battery applications account for nearly 25% of the worldwide cobalt demand in 2007. It is obvious that recycling of batteries may help saving natural resources. However, it is not straightforward to quantify to what extent rechargeable battery recycling saves natural resources, given their complex composition, and the complex international production chain. In this paper, a detailed analysis of a lithium mixed metal oxide battery recycling scenario, where cobalt and nickel are recovered and re-introduced into the battery production chain, is compared with a virgin production scenario. Based on detailed data acquisition from processes spread worldwide, a resource saving analysis is made. The savings are quantified in terms of exergy and cumulative exergy extracted from the natural environment. It turns out that the recycling scenario result in a 51.3% natural resource savings, not only because of decreased mineral ore dependency but also because of reduced fossil resource (45.3% reduction) and nuclear energy demand (57.2%).

288 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The notion of sustainability is introduced through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability.
Abstract: Energy storage using batteries offers a solution to the intermittent nature of energy production from renewable sources; however, such technology must be sustainable. This Review discusses battery development from a sustainability perspective, considering the energy and environmental costs of state-of-the-art Li-ion batteries and the design of new systems beyond Li-ion. Images: batteries, car, globe: © iStock/Thinkstock.

5,271 citations

Journal ArticleDOI
TL;DR: In this paper, the development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed.
Abstract: Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO2) semiconductor materials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applications. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 structure, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photoelectrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bacterial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted.

3,305 citations

Journal ArticleDOI
TL;DR: A review of the use of the TiO 2 photocatalyst for remediation and decontamination of wastewater, report the recent work done, important achievements and problems is presented in this paper, however, a lot more is needed from engineering design and modelling for successful application of the laboratory scale techniques to large scale operation.
Abstract: Even though heterogeneous photocatalysis appeared in many forms, photodegradation of organic pollutants has recently been the most widely investigated. By far, titania has played a much larger role in this scenario compared to other semiconductor photocatalysts due to its cost effectiveness, inert nature and photostability. Extensive literature analysis has shown many possibilities of improving the efficiency of photodecomposition over titania by combining the photoprocess with either physical or chemical operations. The resulting combined processes revealed a flexible line of action for wastewater treatment technologies. The choice of treatment method usually depends upon the composition of the wastewater. However, a lot more is needed from engineering design and modelling for successful application of the laboratory scale techniques to large-scale operation. The present review paper seeks to offer an overview of the dramatic trend in the use of the TiO 2 photocatalyst for remediation and decontamination of wastewater, report the recent work done, important achievements and problems.

2,573 citations

Journal ArticleDOI
Rolf Sander1
TL;DR: According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in the aqueous phase is constant for a dilute solution as discussed by the authors, and a compilation of 17 350 values of Henry's Law constants for 4632 species, collected from 689 references is available at http://wwwhenrys-law.org
Abstract: Many atmospheric chemicals occur in the gas phase as well as in liquid cloud droplets and aerosol particles Therefore, it is necessary to understand the distribution between the phases According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in the aqueous phase is constant for a dilute solution Henry's law constants of trace gases of potential importance in environmental chemistry have been collected and converted into a uniform format The compilation contains 17 350 values of Henry's law constants for 4632 species, collected from 689 references It is also available at http://wwwhenrys-laworg

1,935 citations

Journal ArticleDOI
TL;DR: The field of surface science provides a unique approach to understand bulk, surface and interfacial phenomena occurring during TiO2 photocatalysis as mentioned in this paper, including photon absorption, charge transport and trapping, electron transfer dynamics, adsorbed state, mechanisms, poisons and promoters, and phase and form.

1,768 citations