scispace - formally typeset
Search or ask a question
Author

Herman Wolosker

Bio: Herman Wolosker is an academic researcher from Technion – Israel Institute of Technology. The author has contributed to research in topics: Serine racemase & Serine. The author has an hindex of 43, co-authored 87 publications receiving 8603 citations. Previous affiliations of Herman Wolosker include Rappaport Faculty of Medicine & Johns Hopkins University School of Medicine.


Papers
More filters
Journal ArticleDOI
TL;DR: D-serine is an endogenous modulator of the glycine site of NMDA receptors and fully occupies this site at some functional synapses and greatly attenuates NMDA receptor-mediated neurotransmission as assessed by using whole-cell patch-clamp recordings or indirectly by using biochemical assays of the sequelae of NMda receptor- mediated calcium flux.
Abstract: Functional activity of N-methyl-d-aspartate (NMDA) receptors requires both glutamate binding and the binding of an endogenous coagonist that has been presumed to be glycine, although d-serine is a more potent agonist. Localizations of d-serine and it biosynthetic enzyme serine racemase approximate the distribution of NMDA receptors more closely than glycine. We now show that selective degradation of d-serine with d-amino acid oxidase greatly attenuates NMDA receptor-mediated neurotransmission as assessed by using whole-cell patch–clamp recordings or indirectly by using biochemical assays of the sequelae of NMDA receptor-mediated calcium flux. The inhibitory effects of the enzyme are fully reversed by exogenously applied d-serine, which by itself did not potentiate NMDA receptor-mediated synaptic responses. Thus, d-serine is an endogenous modulator of the glycine site of NMDA receptors and fully occupies this site at some functional synapses.

1,079 citations

Journal ArticleDOI
TL;DR: Cloning and expression of serine racemase in the brain demonstrates the conservation of D-amino acid metabolism in mammals with implications for the regulation of N-methyl-D-aspartate neurotransmission through glia-neuronal interactions.
Abstract: Although d amino acids are prominent in bacteria, they generally are thought not to occur in mammals. Recently, high levels of d-serine have been found in mammalian brain where it activates glutamate/N-methyl-d-aspartate receptors by interacting with the “glycine site” of the receptor. Because amino acid racemases are thought to be restricted to bacteria and insects, the origin of d-serine in mammals has been puzzling. We now report cloning and expression of serine racemase, an enzyme catalyzing the formation of d-serine from l-serine. Serine racemase is a protein representing an additional family of pyridoxal-5′ phosphate-dependent enzymes in eukaryotes. The enzyme is enriched in rat brain where it occurs in glial cells that possess high levels of d-serine in vivo. Occurrence of serine racemase in the brain demonstrates the conservation of d-amino acid metabolism in mammals with implications for the regulation of N-methyl-d-aspartate neurotransmission through glia-neuronal interactions.

751 citations

Journal ArticleDOI
TL;DR: Cytoprotection by HO1 is attributable to its augmentation of iron efflux, reflecting a role for HO1 in modulating intracellular iron levels and regulating cell viability.
Abstract: Haem oxygenase-1 (HO1) is a heat-shock protein that is induced by stressful stimuli. Here we demonstrate a cytoprotective role for HO1: cell death produced by serum deprivation, staurosporine or etoposide is markedly accentuated in cells from mice with a targeted deletion of the HO1 gene, and greatly reduced in cells that overexpress HO1. Iron efflux from cells is augmented by HO1 transfection and reduced in HO1-deficient fibroblasts. Iron accumulation in HO1-deficient cells explains their death: iron chelators protect HO1-deficient fibroblasts from cell death. Thus, cytoprotection by HO1 is attributable to its augmentation of iron efflux, reflecting a role for HO1 in modulating intracellular iron levels and regulating cell viability.

530 citations

Journal ArticleDOI
TL;DR: The improved eNMDAR antagonist NitroMemantine, which selectively inhibits extrasynaptic over physiological synaptic NMDAR activity, protects synapses from Aβ-induced damage both in vitro and in vivo.
Abstract: Synaptic loss is the cardinal feature linking neuropathology to cognitive decline in Alzheimer’s disease (AD). However, the mechanism of synaptic damage remains incompletely understood. Here, using FRET-based glutamate sensor imaging, we show that amyloid-β peptide (Aβ) engages α7 nicotinic acetylcholine receptors to induce release of astrocytic glutamate, which in turn activates extrasynaptic NMDA receptors (eNMDARs) on neurons. In hippocampal autapses, this eNMDAR activity is followed by reduction in evoked and miniature excitatory postsynaptic currents (mEPSCs). Decreased mEPSC frequency may reflect early synaptic injury because of concurrent eNMDAR-mediated NO production, tau phosphorylation, and caspase-3 activation, each of which is implicated in spine loss. In hippocampal slices, oligomeric Aβ induces eNMDAR-mediated synaptic depression. In AD-transgenic mice compared with wild type, whole-cell recordings revealed excessive tonic eNMDAR activity accompanied by eNMDAR-sensitive loss of mEPSCs. Importantly, the improved NMDAR antagonist NitroMemantine, which selectively inhibits extrasynaptic over physiological synaptic NMDAR activity, protects synapses from Aβ-induced damage both in vitro and in vivo.

480 citations

Journal ArticleDOI
TL;DR: Properties such as pH optimum, Km values, and the requirement for pyridoxal phosphate resemble those of bacterial racemases, suggesting that the biosynthetic pathway for D-amino acids is conserved from bacteria to mammalian brain.
Abstract: High levels of d-serine occur in mammalian brain, where it appears to be an endogenous ligand of the glycine site of N-methyl-d-aspartate receptors. In glial cultures of rat cerebral cortex, d-serine is enriched in type II astrocytes and is released upon stimulation with agonists of non-N-methyl-d-aspartate glutamate receptors. The high levels of d-serine in discrete areas of rat brain imply the existence of a biosynthetic pathway. We have purified from rat brain a soluble enzyme that catalyzes the direct racemization of l-serine to d-serine. Purified serine racemase has a molecular mass of 37 kDa and requires pyridoxal 5′-phosphate for its activity. The enzyme is highly selective toward l-serine, failing to racemize any other amino acid tested. Properties such as pH optimum, Km values, and the requirement for pyridoxal phosphate resemble those of bacterial racemases, suggesting that the biosynthetic pathway for d-amino acids is conserved from bacteria to mammalian brain.

468 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This review discusses International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Abstract: The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.

3,044 citations

Journal ArticleDOI
TL;DR: The estimates of energy usage predict the use of distributed codes, with ≤15% of neurons simultaneously active, to reduce energy consumption and allow greater computing power from a fixed number of neurons.
Abstract: Anatomic and physiologic data are used to analyze the energy expenditure on different components of excitatory signaling in the grey matter of rodent brain. Action potentials and postsynaptic effects of glutamate are predicted to consume much of the energy (47% and 34%, respectively), with the resting potential consuming a smaller amount (13%), and glutamate recycling using only 3%. Energy usage depends strongly on action potential rate--an increase in activity of 1 action potential/cortical neuron/s will raise oxygen consumption by 145 mL/100 g grey matter/h. The energy expended on signaling is a large fraction of the total energy used by the brain; this favors the use of energy efficient neural codes and wiring patterns. Our estimates of energy usage predict the use of distributed codes, with

2,912 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism is presented, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology.
Abstract: The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis an...

2,332 citations

Journal ArticleDOI
TL;DR: The molecular and biochemical characterization of HOs is reviewed, with a discussion on the mechanisms of signal transduction and gene regulation that mediate the induction of HO-1 by environmental stress, to lay a foundation for potential future clinical applications of these systems.
Abstract: The heme oxygenases, which consist of constitutive and inducible isozymes (HO-1, HO-2), catalyze the rate-limiting step in the metabolic conversion of heme to the bile pigments (i.e., biliverdin and bilirubin) and thus constitute a major intracellular source of iron and carbon monoxide (CO). In recent years, endogenously produced CO has been shown to possess intriguing signaling properties affecting numerous critical cellular functions including but not limited to inflammation, cellular proliferation, and apoptotic cell death. The era of gaseous molecules in biomedical research and human diseases initiated with the discovery that the endothelial cell-derived relaxing factor was identical to the gaseous molecule nitric oxide (NO). The discovery that endogenously produced gaseous molecules such as NO and now CO can impart potent physiological and biological effector functions truly represented a paradigm shift and unraveled new avenues of intense investigations. This review covers the molecular and biochemical characterization of HOs, with a discussion on the mechanisms of signal transduction and gene regulation that mediate the induction of HO-1 by environmental stress. Furthermore, the current understanding of the functional significance of HO shall be discussed from the perspective of each of the metabolic by-products, with a special emphasis on CO. Finally, this presentation aspires to lay a foundation for potential future clinical applications of these systems.

2,111 citations