scispace - formally typeset
Search or ask a question

Showing papers by "Hermann Kolanoski published in 2014"


Journal ArticleDOI
M. G. Aartsen1, Markus Ackermann, Jenni Adams2, Juanan Aguilar3  +299 moreInstitutions (41)
TL;DR: Results from an analysis with a third year of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8) GeV cm-2 s-1 sr-1 per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7σ.
Abstract: A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8) GeV cm(-2) s(-1) sr(-1) per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7 sigma. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year data set, with a live time of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000-TeV event is the highest-energy neutrino interaction ever observed.

1,183 citations


Journal ArticleDOI
Georges Aad1, Alexander Kupco2, Peter Davison2, Samuel Webb3  +2918 moreInstitutions (81)
TL;DR: In this paper, the ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to dielectron or dimuon final states.
Abstract: The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to dielectron or dimuon final states. Results are presented from an analysis of proton-proton (pp) collisions at a center-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3 fb(-1) in the dimuon channel. A narrow resonance with Standard Model Z couplings to fermions is excluded at 95% confidence level for masses less than 2.79 TeV in the dielectron channel, 2.53 TeV in the dimuon channel, and 2.90 TeV in the two channels combined. Limits on other model interpretations are also presented, including a grand-unification model based on the E-6 gauge group, Z* bosons, minimal Z' models, a spin-2 graviton excitation from Randall-Sundrum models, quantum black holes, and a minimal walking technicolor model with a composite Higgs boson.

364 citations


Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2871 moreInstitutions (167)
TL;DR: In this article, the authors presented the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb(-1) of LHC proton-proton collision data taken at center-of-mass energies of root s = 7 and 8 TeV.
Abstract: This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb(-1) of LHC proton-proton collision data taken at centre-of-mass energies of root s = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative inaccuracy of less than 10% for electrons and photons up to 60 GeV transverse energy, rising to 40% for transverse energies above 500 GeV.

361 citations


Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2911 moreInstitutions (209)
TL;DR: In this paper, a measurement of the Z/gamma* boson transverse momentum spectrum using ATLAS proton-proton collision data at a centre-of-mass energy of root s = 7TeV at the LHC is described.
Abstract: This paper describes a measurement of the Z/gamma* boson transverse momentum spectrum using ATLAS proton-proton collision data at a centre-of-mass energy of root s = 7TeV at the LHC. The measurement is performed in the Z/gamma* -> e(+)e(-) and Z/gamma* -> mu(+)mu(-) channels, using data corresponding to an integrated luminosity of 4.7 fb(-1). Normalized differential cross sections as a function of the Z/gamma* boson transverse momentum are measured for transverse momenta up to 800 GeV. The measurement is performed inclusively for Z/gamma* rapidities up to 2.4, as well as in three rapidity bins. The channel results are combined, compared to perturbative and resummed QCD calculations and used to constrain the parton shower parameters of Monte Carlo generators.

339 citations


Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2916 moreInstitutions (211)
TL;DR: In this article, a search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented.
Abstract: A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.

325 citations


Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2870 moreInstitutions (169)
TL;DR: The performance of the ATLAS muon reconstruction during the LHC run withpp collisions at s=7–8 TeV in 2011–2012 is presented, focusing mainly on data collected in 2012.
Abstract: This paper presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at root s = 7-8 TeV in 2011-2012, focusing mainly on data collected in 2012. Measurements ...

305 citations


Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2885 moreInstitutions (169)
TL;DR: In this article, the electron reconstruction and identification efficiencies of the ATLAS detector at the LHC have been evaluated using proton-proton collision data collected in 2011 at TeV and corresponding to an integrated luminosity of 4.7 fb.
Abstract: Many of the interesting physics processes to be measured at the LHC have a signature involving one or more isolated electrons. The electron reconstruction and identification efficiencies of the ATLAS detector at the LHC have been evaluated using proton-proton collision data collected in 2011 at TeV and corresponding to an integrated luminosity of 4.7 fb. Tag-and-probe methods using events with leptonic decays of and bosons and mesons are employed to benchmark these performance parameters. The combination of all measurements results in identification efficiencies determined with an accuracy at the few per mil level for electron transverse energy greater than 30 GeV.

302 citations


Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2868 moreInstitutions (187)
TL;DR: In this paper, an improved measurement of the mass of the Higgs boson is derived from a combined fit to the reconstructed invariant mass spectra of the decay channels H -> gamma gamma and H -> ZZ* -> 4l.
Abstract: An improved measurement of the mass of the Higgs boson is derived from a combined fit to the reconstructed invariant mass spectra of the decay channels H -> gamma gamma and H -> ZZ* -> 4l. The analysis uses the pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at center-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of 25 fb(-1). The measured value of the Higgs boson mass is m(H) = 125.36 +/- 0.37(stat) +/- 0.18 (syst) GeV. This result is based on improved energy-scale calibrations for photons, electrons, and muons as well as other analysis improvements, and supersedes the previous result from ATLAS. Upper limits on the total width of the Higgs boson are derived from fits to the invariant mass spectra of the H -> gamma gamma and H -> ZZ* -> 4l decay channels.

274 citations


Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2916 moreInstitutions (196)
TL;DR: In this paper, a measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb(-1) of proton-proton collisions data at root s = 7 TeV and 20.4 GeV.
Abstract: A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb(-1) of proton-proton collisions data at root s = 7 TeV and 20.3 fb(-1) at root s = 8 TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be mu = 1.17 +/- 0.27 at the value of the Higgs boson mass measured by ATLAS, m(H) = 125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of m(H). They are found to be mu(ggF) = 1.32 +/- 0.38, mu(VBF) = 0.8 +/- 0.7, mu(WH) = 1.0 +/- 1.6, mu(ZH) = 0.1(-0.1)(+3.7), and mu t (t) over barH = 1.6(-1.8)(+2.7), for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.

268 citations


Journal ArticleDOI
M. G. Aartsen1, Rasha Abbasi2, Markus Ackermann, Jenni Adams3  +288 moreInstitutions (39)
TL;DR: In this article, the authors describe methods and performance of reconstructing charged particle energies and topologies from the observed Cherenkov light yield, including techniques to measure the energies of uncontained muon tracks, achieving average uncertainties in electromagnetic-equivalent deposited energy of similar to 15% above 10 TeV.
Abstract: Accurate measurement of neutrino energies is essential to many of the scientific goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the Cherenkov light produced by the transit through a medium of charged particles created in neutrino interactions. The amount of light emitted is proportional to the deposited energy, which is approximately equal to the neutrino energy for v(e) and v(mu) charged-current interactions and can be used to set a lower bound on neutrino energies and to measure neutrino spectra statistically in other channels. Here we describe methods and performance of reconstructing charged-particle energies and topologies from the observed Cherenkov light yield, including techniques to measure the energies of uncontained muon tracks, achieving average uncertainties in electromagnetic-equivalent deposited energy of similar to 15% above 10 TeV.

244 citations


Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2870 moreInstitutions (169)
01 Nov 2014
TL;DR: In this paper, the performance of ATLAS muon reconstruction during the LHC run with pp collisions at root s = 7-8 TeV in 2011-2012, focusing mainly on data collected in 2012.
Abstract: This paper presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at root s = 7-8 TeV in 2011-2012, focusing mainly on data collected in 2012. Measurements ...

Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2916 moreInstitutions (196)
01 Dec 2014
TL;DR: In this paper, a measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb(-1) of proton-proton collisions data at root s = 7 TeV and 20.4 GeV.
Abstract: A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb(-1) of proton-proton collisions data at root s = 7 TeV and 20.3 fb(-1) at root s = 8 TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be mu = 1.17 +/- 0.27 at the value of the Higgs boson mass measured by ATLAS, m(H) = 125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of m(H). They are found to be mu(ggF) = 1.32 +/- 0.38, mu(VBF) = 0.8 +/- 0.7, mu(WH) = 1.0 +/- 1.6, mu(ZH) = 0.1(-0.1)(+3.7), and mu t (t) over barH = 1.6(-1.8)(+2.7), for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.

Journal ArticleDOI
M. G. Aartsen1, Markus Ackermann, Jenni Adams2, Juanan Aguilar3  +306 moreInstitutions (42)
TL;DR: In this paper, the authors present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86 string detector.
Abstract: We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86 string detector The total livetime of the combined data set is 1373 days For an E-2 spectrum, the observed 90% C L flux upper limits are similar to 10(-12) TeV-1 cm(-2) s(-1) for energies between 1 TeV and 1 PeV in the northern sky and similar to 10(-11) TeV-1 cm(-2) s(-1) for energies between 100 TeV and 100 PeV in the southern sky This represents a 40% improvement compared to previous publications, resulting from both the additional year of data and the introduction of improved reconstructions In addition, we present the first results from an all-sky search for extended sources of neutrinos We update the results of searches for neutrino emission from stacked catalogs of sources and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei In all cases, the data are compatible with the background-only hypothesis, and upper limits on the flux of muon neutrinos are reported for the sources considered

Posted Content
TL;DR: In this article, the authors present a vision for an expansion of the current IceCube detector, including the aim of instrumenting a $10\,\mathrm{km}^3$ volume of clear glacial ice at the South Pole to deliver substantial increases in the astrophysical neutrino sample for all flavors.
Abstract: The recent observation by the IceCube neutrino observatory of an astrophysical flux of neutrinos represents the "first light" in the nascent field of neutrino astronomy. The observed diffuse neutrino flux seems to suggest a much larger level of hadronic activity in the non-thermal universe than previously thought and suggests a rich discovery potential for a larger neutrino observatory. This document presents a vision for an substantial expansion of the current IceCube detector, IceCube-Gen2, including the aim of instrumenting a $10\,\mathrm{km}^3$ volume of clear glacial ice at the South Pole to deliver substantial increases in the astrophysical neutrino sample for all flavors. A detector of this size would have a rich physics program with the goal to resolve the sources of these astrophysical neutrinos, discover GZK neutrinos, and be a leading observatory in future multi-messenger astronomy programs.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2913 moreInstitutions (200)
TL;DR: In this article, the authors search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in root s=8 TeV pp collisions with the ATLAS detector.
Abstract: Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in root s=8 TeV pp collisions with the ATLAS detector

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2881 moreInstitutions (168)
TL;DR: In this paper, two different analysis strategies based on monojetlike and c-tagged event selections are carried out to optimize the sensitivity for direct top-squark-pair production in the decay channel to a charm quark and the lightest neutralino.
Abstract: Results of a search for supersymmetry via direct production of third-generation squarks are reported, using 20.3 fb(-1) of proton-proton collision data at root s = 8 TeV recorded by the ATLAS experiment at the LHC in 2012. Two different analysis strategies based on monojetlike and c-tagged event selections are carried out to optimize the sensitivity for direct top squark-pair production in the decay channel to a charm quark and the lightest neutralino ((t) over tilde (1) -> c + (chi) over tilde (0)(1)) across the top squark-neutralino mass parameter space. No excess above the Standard Model background expectation is observed. The results are interpreted in the context of direct pair production of top squarks and presented in terms of exclusion limits in the (m((t) over tilde1), m((chi) over tilde 10)) parameter space. A top squark of mass up to about 240 GeV is excluded at 95% confidence level for arbitrary neutralino masses, within the kinematic boundaries. Top squark masses up to 270 GeV are excluded for a neutralino mass of 200 GeV. In a scenario where the top squark and the lightest neutralino are nearly degenerate in mass, top squark masses up to 260 GeV are excluded. The results from the monojetlike analysis are also interpreted in terms of compressed scenarios for top squark-pair production in the decay channel (t) over tilde (1) -> b + ff' + (chi) over tilde (0)(1) and sbottom pair production with (b) over tilde -> b + (chi) over tilde (0)(1), leading to a similar exclusion for nearly mass-degenerate third-generation squarks and the lightest neutralino. The results in this paper significantly extend previous results at colliders.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2959 moreInstitutions (202)
TL;DR: A search is presented for dark matter pair production in association with a W or Z boson in pp collisions representing 20.3 fb(-1) of integrated luminosity at √s=8‬TeV using data recorded with the ATLAS detector at the Large Hadron Collider.
Abstract: A search is presented for dark matter pair production in association with a W or Z boson in pp collisions representing 20.3 fb(-1) of integrated luminosity at root s = 8 TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet mass consistent with a W or Z boson, and with large missing transverse momentum are analyzed. The data are consistent with the standard model expectations. Limits are set on the mass scale in effective field theories that describe the interaction of dark matter and standard model particles, and on the cross section of Higgs production and decay to invisible particles. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are set in two fiducial regions.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2923 moreInstitutions (206)
TL;DR: In this article, the results of a search for top squark (stop) pair production in final states with one isolated lepton, jets, and missing transverse momentum are reported.
Abstract: The results of a search for top squark (stop) pair production in final states with one isolated lepton, jets, and missing transverse momentum are reported. The analysis is performed with proton-proton collision data at root s = 8 TeV collected with the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of 20 fb(-1). The lightest supersymmetric particle (LSP) is taken to be the lightest neutralino which only interacts weakly and is assumed to be stable. The stop decay modes considered are those to a top quark and the LSP as well as to a bottom quark and the lightest chargino, where the chargino decays to the LSP by emitting a W boson. A wide range of scenarios with different mass splittings between the stop, the lightest neutralino and the lightest chargino are considered, including cases where the W bosons or the top quarks are off-shell. Decay modes involving the heavier charginos and neutralinos are addressed using a set of phenomenological models of supersymmetry. No significant excess over the Standard Model prediction is observed. A stop with a mass between 210 and 640 GeV decaying directly to a top quark and a massless LSP is excluded at 95% confidence level, and in models where the mass of the lightest chargino is twice that of the LSP, stops are excluded at 95% confidence level up to a mass of 500 GeV for an LSP mass in the range of 100 to 150 GeV. Stringent exclusion limits are also derived for all other stop decay modes considered, and model-independent upper limits are set on the visible cross-section for processes beyond the Standard Model.

Posted Content
09 Jan 2014
TL;DR: The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill array of the IceCube Neutrino Observatory as mentioned in this paper, which will feature the world's largest effective volume for neutrinos at an energy threshold of a few GeV.
Abstract: The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill array of the IceCube Neutrino Observatory. Leveraging technology proven with IceCube, PINGU will feature the world's largest effective volume for neutrinos at an energy threshold of a few GeV, improving the sensitivity to several aspects of neutrino oscillation physics at modest cost. With its unprecedented statistical sample of low-energy atmospheric neutrinos, PINGU will have highly competitive sensitivity to $ u_{\mu}$ disappearance, the $\theta_{23}$ octant, and maximal mixing, will make the world's best $ u_{\tau}$ appearance measurement, allowing a unique probe of the unitarity of the PMNS mixing matrix, and will be able to distinguish the neutrino mass ordering at $3\sigma$ significance with less than 4 years of data. PINGU can also extend the indirect search for solar WIMP dark matter complimentary to the on-going and planned direct dark matter experiments. At the lower end of the energy range, PINGU may use neutrino tomography to directly probe the composition of the Earth's core. With its increased module density, PINGU will improve IceCube's sensitivity to galactic supernova neutrino bursts and enable it to extract the neutrino energy spectral shape.

Journal ArticleDOI
Georges Aad1, Alexander Kupco2, Peter Davison3, Samuel Webb4  +3033 moreInstitutions (211)
TL;DR: In this article, the authors measured the charged-particle fragmentation functions of jets produced in ultra-relativistic nuclear collisions to provide insight into the modification of parton showers in the hot, dense medi...

Journal ArticleDOI
TL;DR: In this article, the authors present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86-string detector.
Abstract: We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86-string detector. The total livetime of the combined dataset is 1,373 days. For an E$^{-2}$ spectrum the median sensitivity at 90\% C.L. is $\sim 10^{-12}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$ for energies between 1 TeV$-$1 PeV in the northern sky and $\sim 10^{-11}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$ for energies between 100 TeV $-$ 100 PeV in the southern sky. The sensitivity has improved from both the additional year of data and the introduction of improved reconstructions compared to previous publications. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update results of searches for neutrino emission from stacked catalogs of sources, and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei. In all cases, the data are compatible with the background-only hypothesis, and upper limits on the flux of muon neutrinos are reported for the sources considered.

Journal ArticleDOI
TL;DR: In this article, the authors present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs) that disfavor much of the parameter space for the latest models.
Abstract: We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than $\sim1\%$ of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2911 moreInstitutions (76)
TL;DR: In this article, the first five azimuthal harmonics, v(1) to v(5), were measured using 28 nb(-1) of p + Pb collisions at a nucleon-nucleon center-of-mass energy of root s(NN) = 5.02 TeV measured with the ATLAS detector at the LHC.
Abstract: Measurements of two-particle correlation functions and the first five azimuthal harmonics, v(1) to v(5), are presented, using 28 nb(-1) of p + Pb collisions at a nucleon-nucleon center-of-mass energy of root s(NN) = 5.02 TeV measured with the ATLAS detector at the LHC. Significant long-range "ridgelike" correlations are observed for pairs with small relative azimuthal angle (|Delta phi| 2 pi/3) over the transverse momentum range 0.4 4 GeV. The v(2)(p(T)), v(3)(p(T)), and v(4)(p(T)) are compared to the v(n) coefficients in Pb + Pb collisions at root s(NN) = 2.76 TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average p(T) of particles produced in the two collision systems.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2931 moreInstitutions (211)
TL;DR: In this article, the neutral Higgs bosons predicted by the Minimal Supersymmetric Standard Model (MSSM) were searched for in the τ τ final state.
Abstract: A search for the neutral Higgs bosons predicted by the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is performed on data from proton-proton collisions at a centre-of-mass energy of 8 TeV collected with the ATLAS detector at the Large Hadron Collider. The samples used for this search were collected in 2012 and correspond to integrated luminosities in the range 19.5-20.3 fb−1. The MSSM Higgs bosons are searched for in the τ τ final state. No significant excess over the expected background is observed, and exclusion limits are derived for the production cross section times branching fraction of a scalar particle as a function of its mass. The results are also interpreted in the MSSM parameter space for various benchmark scenarios.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek  +2893 moreInstitutions (188)
TL;DR: In this article, the authors presented a search for new resonances decaying to final states with a vector boson produced in association with a high transverse momentum photon, Vγ, with V=W(→lν)V=W (→ lν) or Z(→ l+l−)Z(→lp+lp) where l=el=e or μ.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2919 moreInstitutions (205)
TL;DR: In this paper, a search for direct top-squark pair production in final states with two leptons (electrons or muons) of opposite charge using 203 fb−1 of pp collision data at √s = 8 TeV, collected by the ATLAS experiment at the Large Hadron Collider in 2012, was presented.
Abstract: A search is presented for direct top-squark pair production in final states with two leptons (electrons or muons) of opposite charge using 203 fb−1 of pp collision data at √s = 8 TeV, collected by the ATLAS experiment at the Large Hadron Collider in 2012 No excess over the Standard Model expectation is found The results are interpreted under the separate assumptions (i) that the top squark decays to a b-quark in addition to an on-shell chargino whose decay occurs via a real or virtual W boson, or (ii) that the top squark decays to a t-quark and the lightest neutralino A top squark with a mass between 150 GeV and 445 GeV decaying to a b-quark and an on-shell chargino is excluded at 95% confidence level for a top squark mass equal to the chargino mass plus 10 GeV, in the case of a 1 GeV lightest neutralino Top squarks with masses between 215 (90) GeV and 530 (170) GeV decaying to an on-shell (off-shell) t-quark and a neutralino are excluded at 95% confidence level for a 1 GeV neutralino

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2917 moreInstitutions (211)
TL;DR: In this article, the results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1 fb(-1) of proton-proton collision data at = 8 TeV recorded with the ATLAS detector at the LHC are reported.
Abstract: The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1 fb(-1) of proton-proton collision data at = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via or , where denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of . For a branching fraction of 100%, top squark masses in the range 270-645 GeV are excluded for masses below 30 GeV. For a branching fraction of 50% to either or , and assuming the mass to be twice the mass, top squark masses in the range 250-550 GeV are excluded for masses below 60 GeV.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2950 moreInstitutions (205)
TL;DR: In this article, the authors measured the production of a W boson in association with a charm quark in pp collisions at root s=7 TeV with the ATLAS detector.
Abstract: Measurement of the production of a W boson in association with a charm quark in pp collisions at root s=7 TeV with the ATLAS detector

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2925 moreInstitutions (199)
TL;DR: The search for the Higgs boson decays to a photon and a Z boson in pp collisions at root s=7 and 8 TeV with the ATLAS detector as discussed by the authors.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2918 moreInstitutions (211)
TL;DR: Results of a search for the electroweak associated production of chargino and next-to-lightest neutralinos, pairs of charginos or pairs of tau sleptons are presented, characterised by final states with at least two hadronically decaying tau leptons, missing transverse momentum and low jet activity.
Abstract: Results of a search for the electroweak associated production of charginos and next-to-lightest neutralinos, pairs of charginos or pairs of tau sleptons are presented. These processes are characterised by final states with at least two hadronically decaying tau leptons, missing transverse momentum and low jet activity. The analysis is based on an integrated luminosity of 20.3 fb(-1) of proton-proton collisions at root s = 8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess is observed with respect to the predictions from Standard Model processes. Limits are set at 95% confidence level on the masses of the lighter chargino and next-to-lightest neutralino for various hypotheses for the lightest neutralino mass in simplified models. In the scenario of direct production of chargino pairs, with each chargino decaying into the lightest neutralino via an intermediate tau slepton, chargino masses up to 345 GeV are excluded for a massless lightest neutralino. For associated production of mass-degenerate charginos and next-to-lightest neutralinos, both decaying into the lightest neutralino via an intermediate tau slepton, masses up to 410 GeV are excluded for a massless lightest neutralino.