scispace - formally typeset
Search or ask a question
Author

Hermann Kolanoski

Bio: Hermann Kolanoski is an academic researcher from Humboldt University of Berlin. The author has contributed to research in topics: Large Hadron Collider & Neutrino. The author has an hindex of 145, co-authored 1279 publications receiving 96152 citations. Previous affiliations of Hermann Kolanoski include Uppsala University & University of California, Davis.


Papers
More filters
Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2882 moreInstitutions (170)
TL;DR: In this article, the production cross sections for W and Z bosons in association with jets have been measured in proton-proton collisions at root s = 7 TeV with the ATLAS experiment at the Large Hadron Collider.
Abstract: The ratio of the production cross sections for W and Z bosons in association with jets has been measured in proton-proton collisions at root s = 7 TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is based on the entire 2011 dataset, corresponding to an integrated luminosity of 4.6 fb(-1). Inclusive and differential cross-section ratios for massive vector bosons decaying to electrons and muons are measured in association with jets with transverse momentum p(T) > 30 GeV and jet rapidity vertical bar y vertical bar < 4.4. The measurements are compared to next-to-leading-order perturbative QCD calculations and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.

31 citations

Journal ArticleDOI
Rasha Abbasi1, Markus Ackermann, Jenni Adams2, Juanan Aguilar3  +372 moreInstitutions (50)
TL;DR: In this article, a reconstruction method based on convolutional architectures and hexagonally shaped kernels is presented, which is robust towards systematic uncertainties in the simulation and has been tested on experimental data.
Abstract: Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction method based on convolutional architectures and hexagonally shaped kernels is presented. The presented method is robust towards systematic uncertainties in the simulation and has been tested on experimental data. In comparison to standard reconstruction methods in IceCube, it can improve upon the reconstruction accuracy, while reducing the time necessary to run the reconstruction by two to three orders of magnitude.

31 citations

Journal ArticleDOI
TL;DR: In this paper, a search is performed over the entire parameter space of energy, direction and time looking for neutrino flares of 20 microseconds to a year duration from astrophysical sources among the atmospheric neutrinos and muon backgrounds.
Abstract: This paper presents searches for flaring sources of neutrinos using the IceCube neutrino telescope. For the first time, a search is performed over the entire parameter space of energy, direction and time looking for neutrino flares of 20 microseconds to a year duration from astrophysical sources among the atmospheric neutrino and muon backgrounds. Searches which integrate over time are less sensitive to flares because they are affected by a larger background of atmospheric neutrinos and muons that can be reduced by the time constraint. Flaring sources considered here, such as active galactic nuclei, soft gamma-ray repeaters and gamma-ray bursts, are promising candidate neutrino emitters. We used mainly data taken between April 5, 2008 and May 20, 2009 by a partially completed configuration of IceCube with 40 strings. For the presented searches an unbinned maximum likelihood method is used with a time-dependent prior to test several different source hypotheses. An "untriggered" search covers any possible time-dependent emission from sources not correlated to any other observation using other astrophysical messengers such as photons. Moreover, a similar time scan is performed for a predefined catalogue of sources that exhibit intense photon flares. Searches triggered by multi-wavelength information on flares from blazars and soft gamma-ray repeaters are performed using the 40 string data and also the data taken by the previous configuration of 22 strings in operation between May 31, 2007 and April 5, 2008. Flares for which extensive and continuous monitoring is available from Fermi-LAT and SWIFT and flares detected by imaging Cherenkov telescopes with shorter time-scale monitoring are considered. The results from all searches are compatible with a fluctuation of the background.

31 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +2844 moreInstitutions (191)
TL;DR: In this paper, a search for the flavour-changing neutral-current decay was performed using data collected by the ATLAS detector during 2012 from proton-proton collisions at the Large Hadron Collider at a center-of-mass energy of root s = 8 TeV, corresponding to an integrated luminosity of 20.3 fb(-1).
Abstract: A search for the flavour-changing neutral-current decay is presented. Data collected by the ATLAS detector during 2012 from proton-proton collisions at the Large Hadron Collider at a centre-of-mass energy of root s = 8 TeV, corresponding to an integrated luminosity of 20.3 fb(-1), are analysed. Top-quark pair-production events with one top quark decaying through the t -> qZ (q = u,c) channel and the other through the dominant Standard Model mode t -> bW are considered as signal. Only the decays of the Z boson to charged leptons and leptonic W boson decays are used. No evidence for a signal is found and an observed (expected) upper limit on the t -> qZ branching ratio of 7 x 10(-4) (8 x 10(-4)) is set at the 95 % confidence level.

31 citations

Journal ArticleDOI
Morad Aaboud, Alexander Kupco1, Peter Davison2, Samuel Webb3  +2921 moreInstitutions (224)
TL;DR: In this paper, measurements of top quark spin observables were performed in the dilepton final state, characterised by the presence of two isolated leptons (electrons or muons).
Abstract: Measurements of top quark spin observables in $t\bar{t}$ events are presented based on 20.2 fb$^{-1}$ of $\sqrt{s} = 8$ TeV proton-proton collisions recorded with the ATLAS detector at the LHC. The analysis is performed in the dilepton final state, characterised by the presence of two isolated leptons (electrons or muons). There are 15 observables, each sensitive to a different coefficient of the spin density matrix of $t\bar{t}$ production, which are measured independently. Ten of these observables are measured for the first time. All of them are corrected for detector resolution and acceptance effects back to the parton and stable-particle levels. The measured values of the observables at parton level are compared to Standard Model predictions at next-to-leading order in QCD. The corrected distributions at stable-particle level are presented and the means of the distributions are compared to Monte Carlo predictions. No significant deviation from the Standard Model is observed for any observable.

30 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations