scispace - formally typeset
Search or ask a question
Author

Hermann Kolanoski

Bio: Hermann Kolanoski is an academic researcher from Humboldt University of Berlin. The author has contributed to research in topics: Large Hadron Collider & Neutrino. The author has an hindex of 145, co-authored 1279 publications receiving 96152 citations. Previous affiliations of Hermann Kolanoski include Uppsala University & University of California, Davis.


Papers
More filters
Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +2871 moreInstitutions (213)
TL;DR: In this paper, a search for Higgs boson production in association with a W or Z boson, in the H -> WW* decay channel, is performed with a data sample collected with the ATLAS detector at the LHC in proton-proton collisions at centre-of-mass energies root s = 7 TeV and 8TeV, corresponding to integrated luminosities of 4.5 fb(-1) and 20.3 fb(1) respectively.
Abstract: A search for Higgs boson production in association with a W or Z boson, in the H -> WW* decay channel, is performed with a data sample collected with the ATLAS detector at the LHC in proton-proton collisions at centre-of-mass energies root s = 7 TeV and 8TeV, corresponding to integrated luminosities of 4.5 fb(-1) and 20.3 fb(-1), respectively. The W H production mode is studied in two-lepton and three-lepton final states, while twolepton and four-lepton final states are used to search for the ZH production mode. The observed significance, for the combined WH and ZH production, is 2.5 standard deviations while a significance of 0.9 standard deviations is expected in the Standard Model Higgs boson hypothesis. The ratio of the combined W H and Z H signal yield to the Standard Model expectation, mu(VH), is found to be mu(VH) = 3.0(-1.1)(+1.3)(stat.)(-0.7)(+1.0) (sys.) for the Higgs boson mass of 125.36 GeV. The WH and ZH production modes are also combined with the gluon fusion and vector boson fusion production modes studied in the H -> WW* -> l nu l nu decay channel, resulting in an overall observed significance of 6.5 standard deviations and mu F-gg+VBF+VH = 1.16(-0.15)(+0.16)(stat.)(-0.15)(+0.18)(sys.). The results are interpreted in terms of scaling factors of the Higgs boson couplings to vector bosons (kappa(V)) and fermions (kappa(F)); the combined results are: vertical bar kappa(V)vertical bar = 1.06(-0.10)(+0.10), vertical bar kappa(F)vertical bar = 0.85(-0.20)(+0.26)

101 citations

Journal ArticleDOI
Georges Aad, Brad Abbott1, Jalal Abdallah2, A. A. Abdelalim3  +3019 moreInstitutions (175)
TL;DR: A measurement of the top-antitop production charge asymmetry A_C is presented using data corresponding to an integrated luminosity of 1.04 fb^-1 of pp collisions at sqrt(s) = 7 TeV collected by the ATLAS detector at the LHC as discussed by the authors.
Abstract: A measurement of the top-antitop production charge asymmetry A_C is presented using data corresponding to an integrated luminosity of 1.04 fb^-1 of pp collisions at sqrt(s) = 7 TeV collected by the ATLAS detector at the LHC. Events are selected with a single lepton (electron or muon), missing transverse momentum and at least four jets of which at least one jet is identified as coming from a b-quark. A kinematic fit is used to reconstruct the ttbar event topology. After background subtraction, a Bayesian unfolding procedure is performed to correct for acceptance and detector effects. The measured value of A_C is A_C = -0.018 +/- 0.028 (stat.) +/- 0.023 (syst.), consistent with the prediction from the MC@NLO Monte Carlo generator of A_C = 0.006 +/- 0.002. Measurements of A_C in two ranges of invariant mass of the top-antitop pair is also shown.

100 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, J. Abdallah3, A. A. Abdelalim4  +3063 moreInstitutions (195)
TL;DR: In an R-parity conserving minimal supersymmetric scenario, assuming that the scalar bottom quarks decays exclusively into a bottom quark and a neutralino, 95% confidence-level upper limits are obtained in the b(1) - χ(1)(0) mass plane such that for neutralino masses below 60 GeV scalarBottom masses up to 390 GeV are excluded.
Abstract: The results of a search for pair production of the scalar partners of bottom quarks in 2: 05 fb(-1) of pp collisions at root s = 7 TeV using the ATLAS experiment are reported. Scalar bottom quarks ...

100 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed study of the lepton momentum spectrum in υ(4S) decays has been made using the ARGUS detector at the DORIS II e+e− storage ring at DESY.

100 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2813 moreInstitutions (169)
TL;DR: In this article, a search for narrow diboson resonances decaying to either leptonically (to an electron or a muon plus a neutrino) or hadronically (decaying to an electron and a neutrinne) is presented.
Abstract: A search is presented for narrow diboson resonances decaying to [Formula: see text] or [Formula: see text] in the final state where one [Formula: see text] boson decays leptonically (to an electron or a muon plus a neutrino) and the other [Formula: see text] boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb[Formula: see text] of [Formula: see text] collisions at [Formula: see text] TeV collected by the ATLAS detector at the large hadron collider. No evidence for resonant diboson production is observed, and resonance masses below 700 and 1490 GeV are excluded at 95 % confidence level for the spin-2 Randall-Sundrum bulk graviton [Formula: see text] with coupling constant of 1.0 and the extended gauge model [Formula: see text] boson respectively.

99 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations