scispace - formally typeset
Search or ask a question

Showing papers by "Hermann Wagner published in 2009"


Journal ArticleDOI
TL;DR: In this paper, the spatial contrast sensitivity function (CSF) and grating acuity were measured in two barn owls with psychophysical techniques, and the CSF found here renders the typical band-limited, inverted U-shaped function, with a low maximum contrast sensitivity of 8-19 at a spatial frequency of 1 cyc/deg.
Abstract: The eyes of barn owls (Tyto alba pratincola) display very little aberrations, and have thus excellent optical quality. In a series of behavioral experiments, we tested whether this presumably beneficial feature is also reflected at a perceptual level in this species. As fundamental indicators for visual performance, the spatial contrast sensitivity function (CSF) and grating acuity were measured in two barn owls with psychophysical techniques. Stimulus luminance was 2.7 cd/m(2). The CSF found here renders the typical band-limited, inverted U-shaped function, with a low maximum contrast sensitivity of 8-19 at a spatial frequency of 1 cyc/deg. Grating acuity was estimated from the CSF high frequency cut-off and yielded 3.0-3.7 cyc/deg. In a second experiment, in which contrast was held constant and spatial frequency was varied, grating acuity was measured directly (2.6-4.0 cyc/deg). These results put barn owls at the very low end of the visual acuity spectrum of birds, and demonstrate that visual resolution and sensitivity cannot be predicted by optical considerations alone.

68 citations


Journal ArticleDOI
TL;DR: The aerodynamics of a newly constructed wing model the geometry of which is related to the wing of a barn owl is experimentally investigated in this paper, where the main flow feature of the clean wing is a transitional separation bubble on the suction side.
Abstract: The aerodynamics of a newly constructed wing model the geometry of which is related to the wing of a barn owl is experimentally investigated. Several barn owl wings are scanned to obtain three-dimensional surface models of natural wings. A rectangular wing model with the general geometry of the barn owl but without any owl-specific structure being the reference case for all subsequent measurements is investigated using pressure tabs, oil flow pattern technique, and particle-image velocimetry. The main flow feature of the clean wing is a transitional separation bubble on the suction side. The size of the bubble depends on the Reynolds number and the angle of attack, whereas the location is mainly influenced by the angle of attack. Next, a second model with a modified surface is considered and its influence on the flow field is analyzed. Applying a velvet onto the suction side drastically reduces the size of this separation at moderate angles of attack and higher Reynolds numbers.

65 citations


Journal ArticleDOI
05 Nov 2009-PLOS ONE
TL;DR: Novel stimuli to simulate the removal of the barn owl's ruff in a virtual acoustic environment are created, thus creating a situation similar to passive listening in other animals, and open up the possibility to apply the results on autonomous agents, creation of virtual auditory environments for humans, or in hearing aids.
Abstract: Background: When sound arrives at the eardrum it has already been filtered by the body, head, and outer ear. This process is mathematically described by the head-related transfer functions (HRTFs), which are characteristic for the spatial position of a sound source and for the individual ear. HRTFs in the barn owl (Tyto alba) are also shaped by the facial ruff, a specialization that alters interaural time differences (ITD), interaural intensity differences (ILD), and the frequency spectrum of the incoming sound to improve sound localization. Here we created novel stimuli to simulate the removal of the barn owl’s ruff in a virtual acoustic environment, thus creating a situation similar to passive listening in other animals, and used these stimuli in behavioral tests. Methodology/Principal Findings: HRTFs were recorded from an owl before and after removal of the ruff feathers. Normal and ruff-removed conditions were created by filtering broadband noise with the HRTFs. Under normal virtual conditions, no differences in azimuthal head-turning behavior between individualized and non-individualized HRTFs were observed. The owls were able to respond differently to stimuli from the back than to stimuli from the front having the same ITD. By contrast, such a discrimination was not possible after the virtual removal of the ruff. Elevational head-turn angles were (slightly) smaller with non-individualized than with individualized HRTFs. The removal of the ruff resulted in a large decrease in elevational head-turning amplitudes. Conclusions/Significance: The facial ruff a) improves azimuthal sound localization by increasing the ITD range and b) improves elevational sound localization in the frontal field by introducing a shift of iso–ILD lines out of the midsagittal plane, which causes ILDs to increase with increasing stimulus elevation. The changes at the behavioral level could be related to the changes in the binaural physical parameters that occurred after the virtual removal of the ruff. These data provide new insights into the function of external hearing structures and open up the possibility to apply the results on autonomous agents, creation of virtual auditory environments for humans, or in hearing aids.

47 citations


Journal ArticleDOI
TL;DR: Exctracellular recordings of neural responses to auditory stimuli from far advanced stations of two parallel pathways demonstrated that the representations of interaural time difference and frequency in the forebrain pathway differ from those in the midbrain pathway, suggesting that the fore brain representation may serve as a population code supporting fine discrimination of central inter aural time differences and coarse indication of laterality of a stimulus for large interaurally time differences.
Abstract: Barn owls process sound-localization information in two parallel pathways, the midbrain and the forebrain pathway. Exctracellular recordings of neural responses to auditory stimuli from far advanced stations of these pathways, the auditory arcopallium in the forebrain and the external nucleus of the inferior colliculus in the midbrain, demonstrated that the representations of interaural time difference and frequency in the forebrain pathway differ from those in the midbrain pathway. Specifically, low-frequency representation was conserved in the forebrain pathway, while it was lost in the midbrain pathway. Variation of interaural time difference yielded symmetrical tuning curves in the midbrain pathway. By contrast, the typical forebrain-tuning curve was asymmetric with a steep slope crossing zero time difference and a less-steep slope toward larger contralateral time disparities. Low sound frequencies contributed sensitivity to contralateral leading sounds underlying these asymmetries, whereas high frequencies enhanced the steepness of slopes at small interaural time differences. Furthermore, the peaks of time-disparity tuning curves were wider in the forebrain than in the midbrain. The distribution of the steepest slopes of best interaural time differences in the auditory arcopallium, but not in the external nucleus of the inferior colliculus, was centered at zero time difference. The distribution observed in the auditory arocpallium is reminiscent of the situation observed in small mammals. We speculate that the forebrain representation may serve as a population code supporting fine discrimination of central interaural time differences and coarse indication of laterality of a stimulus for large interaural time differences.

38 citations


Journal ArticleDOI
TL;DR: The impulse response of the neurophonic potential in the nucleus laminaris of barn owls reflects many characteristics also observed in responses of the basilar membrane and auditory nerve in mammals.
Abstract: We used acoustic clicks to study the impulse response of the neurophonic potential in the barn owl's nucleus laminaris. Clicks evoked a complex oscillatory neural response with a component that reflected the best frequency measured with tonal stimuli. The envelope of this component was obtained from the analytic signal created using the Hilbert transform. The time courses of the envelope and carrier waveforms were characterized by fitting them with filters. The envelope was better fitted with a Gaussian than with the envelope of a gamma-tone function. The carrier was better fitted with a frequency glide than with a constant instantaneous frequency. The change of the instantaneous frequency with time was better fitted with a linear fit than with a saturating nonlinearity. Frequency glides had not been observed in the bird's auditory system before. The glides were similar to those observed in the mammalian auditory nerve. Response amplitude, group delay, frequency, and phase depended in a systematic way on click level. In most cases, response amplitude decreased linearly as stimulus level decreased, while group delay, phase, and frequency increased linearly as level decreased. Thus the impulse response of the neurophonic potential in the nucleus laminaris of barn owls reflects many characteristics also observed in responses of the basilar membrane and auditory nerve in mammals.

26 citations


Journal ArticleDOI
TL;DR: During development both high and low threshold potassium currents need to be increased in a concerted manner with the sodium conductance for the neurons to exhibit fast and phasic action potential firing and a narrow time window of coincidence detection.

10 citations


Journal ArticleDOI
TL;DR: This work has shown that the neurophonic potential, a frequency-following potential occurring in the network formed by nucleus magnocellularis and nucleus laminaris in the brainstem of the bird, has a temporal precision below 100 μs.
Abstract: It is a challenge to understand how the brain represents temporal events. One of the most intriguing questions is how sub-millisecond representations can be achieved despite the large temporal variations at all levels of processing. For example, the neurophonic potential, a frequency-following potential occurring in the network formed by nucleus magnocellularis and nucleus laminaris in the brainstem of the bird, has a temporal precision below 100 μs.

1 citations