scispace - formally typeset
Search or ask a question

Showing papers by "Hermann Wagner published in 2013"


Journal ArticleDOI
TL;DR: Barn owls are a model system for studying prey capture and the expected easy availability of genetic techniques for specialists in the near future and the possibility to apply the findings in biomimetic devices prey capture in barn owls will remain an exciting field in the future.
Abstract: Barn owls are a model system for studying prey capture. These animals can catch mice by hearing alone, but use vision whenever light conditions allow this. The silent flight, the frontally oriented eyes, and the facial ruffs are specializations that evolved to optimize prey capture. The auditory system is characterized by high absolute sensitivity, a use of interaural time difference for azimuthal sound-localization over almost the total hearing range up to at least 9 kHz, and the use of interaural level difference for elevational sound localization in the upper frequency range. Response latencies towards auditory targets were shortened by covert attention, while overt attention helped to orient towards salient visual objects. However, only 20% of the fixation movements could be explained by the saliency of the fixated objects, suggesting a top-down control of attention. In a visual-search experiment the birds turned earlier and more often towards and spent more time at salient objects. The visual system also exhibits high absolute sensitivity, while the spatial resolution is not particularly high. Last but not least, head movements may be classified as fixations, translations, and rotations combined with translations. These motion primitives may be combined to complex head-movement patterns. With the expected easy availability of genetic techniques for specialists in the near future and the possibility to apply the findings in biomimetic devices prey capture in barn owls will remain an exciting field in the future.

33 citations


Journal ArticleDOI
TL;DR: It is demonstrated that minimally invasive methods can be used to measure EEG-defined wakefulness, slow-wave sleep (SWS), and REM sleep in owls and probably other animals.
Abstract: Insight into the function of sleep may be gained by studying animals in the ecological context in which sleep evolved. Until recently, technological constraints prevented electroencephalogram (EEG) studies of animals sleeping in the wild. However, the recent development of a small recorder (Neurologger 2) that animals can carry on their head permitted the first recordings of sleep in nature. To facilitate sleep studies in the field and to improve the welfare of experimental animals, herein, we test the feasibility of using minimally invasive surface and subcutaneous electrodes to record the EEG in barn owls. The EEG and behaviour of four adult owls in captivity and of four chicks in a nest box in the field were recorded. We scored a 24-h period for each adult bird for wakefulness, slow-wave sleep (SWS), and rapid-eye movement (REM) sleep using 4 s epochs. Although the quality and stability of the EEG signals recorded via subcutaneous electrodes were higher when compared to surface electrodes, the owls’ state was readily identifiable using either electrode type. On average, the four adult owls spent 13.28 h awake, 9.64 h in SWS, and 1.05 h in REM sleep. We demonstrate that minimally invasive methods can be used to measure EEG-defined wakefulness, SWS, and REM sleep in owls and probably other animals.

20 citations


Journal ArticleDOI
TL;DR: A linear summation model explains the dependence of the responses on interaural time difference as measured experimentally with binaural stimulation and is consistent with the view that the afferent axons and their synaptic potentials in NL are the primary origin of the neurophonic.
Abstract: The neurophonic potential is a synchronized frequency-following extracellular field potential that can be recorded in the nucleus laminaris (NL) in the brainstem of the barn owl. Putative generators of the neurophonic are the afferent axons from the nucleus magnocellularis, synapses onto NL neurons, and spikes of NL neurons. The outputs of NL, i.e., action potentials of NL neurons, are only weakly represented in the neurophonic. Instead, the inputs to NL, i.e., afferent axons and their synaptic potentials, are the predominant origin of the neurophonic (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274–2290, 2010). Thus in NL the monaural inputs from the two brain sides converge and create a binaural neurophonic. If these monaural inputs contribute independently to the extracellular field, the response to binaural stimulation can be predicted from the sum of the responses to ipsi- and contralateral stimulation. We found that a linear summation model explains the dependence of the responses on interaural time difference as measured experimentally with binaural stimulation. The fit between model predictions and data was excellent, even without taking into account the nonlinear responses of NL coincidence detector neurons, although their firing rate and synchrony strongly depend on the interaural time difference. These results are consistent with the view that the afferent axons and their synaptic potentials in NL are the primary origin of the neurophonic.

17 citations


Book ChapterDOI
TL;DR: This work used clicks to measure conduction time in NL and made lesions to mark the 0 µs iso-delay contour in multiple penetrations along an isofrequency slab to develop a simple linear model of the delay-line conduction velocity.
Abstract: Axons from the nucleus magnocellularis (NM) and their targets in nucleus laminaris (NL) form the circuit responsible for encoding interaural time differences (ITDs). In barn owls, NL receives bilateral inputs from NM such that axons from the ipsilateral NM enter NL dorsally, while contralateral axons enter from the ventral side. These afferents and their synapses on NL neurons generate a tone-induced local field potential, or neurophonic, that varies systematically with position in NL. From dorsal to ventral within the nucleus, the best interaural time difference (ITD) of the neurophonic shifts from contralateral space to best ITDs around 0 µs. Earlier recordings suggested that in NL, iso-delay contours ran parallel to the dorsal and ventral borders of NL (Sullivan WE, Konishi M. Proc Natl Acad Sci U S A 83:8400–8404, 1986). This axis is orthogonal to that seen in chicken NL, where a single map of ITD runs from around 0 µs ITD medially to contralateral space laterally (Koppl C, Carr CE. Biol Cyber 98:541–559, 2008). Yet the trajectories of the NM axons are similar in owl and chicken (Seidl AH, Rubel EW, Harris DM, J Neurosci 30:70–80, 2010). We therefore used clicks to measure conduction time in NL and made lesions to mark the 0 µs iso-delay contour in multiple penetrations along an isofrequency slab. Iso-delay contours were not parallel to the dorsal and ventral borders of NL; instead the 0 µs iso-delay contour shifted systematically from a dorsal position in medial NL to a ventral position in lateral NL. Could different conduction delays account for the mediolateral shift in the representation of 0 µs ITD? We measured conduction delays using the neurophonic potential and developed a simple linear model of the delay-line conduction velocity. We then raised young owls with time-delaying earplugs in one ear (Gold JI, Knudsen EI, J Neurophysiol 82:2197–2209, 1999) to examine map plasticity.

12 citations


Journal ArticleDOI
TL;DR: Strong evolutionary conservation of Kcnc1 in the barn owl is revealed and the feasibility to address neuroethological questions in organisms with no reference genome by molecular approaches is demonstrated, which will open new avenues for neuroethologists working in these organisms.
Abstract: For prey capture in the dark, the barn owl Tyto alba has evolved into an auditory specialist with an exquisite capability of sound localization. Adaptations include asymmetrical ears, enlarged auditory processing centers, the utilization of minute interaural time differences, and phase locking along the entire hearing range up to 10 kHz. Adaptations on the molecular level have not yet been investigated. Here, we tested the hypothesis that divergence in the amino acid sequence of the voltage-gated K(+) channel Kv3.1 contributes to the accuracy and high firing rates of auditory neurons in the barn owl. We therefore cloned both splice variants of Kcnc1, the gene encoding Kv3.1. Both splice variants, Kcnc1a and Kcnc1b, encode amino acids identical to those of the chicken, an auditory generalist. Expression analyses confirmed neural-restricted expression of the channel. In summary, our data reveal strong evolutionary conservation of Kcnc1 in the barn owl and point to other genes involved in auditory specializations of this animal. The data also demonstrate the feasibility to address neuroethological questions in organisms with no reference genome by molecular approaches. This will open new avenues for neuroethologists working in these organisms.

2 citations