scispace - formally typeset
Search or ask a question
Author

Hermis Iatrou

Bio: Hermis Iatrou is an academic researcher from National and Kapodistrian University of Athens. The author has contributed to research in topics: Copolymer & Anionic addition polymerization. The author has an hindex of 44, co-authored 122 publications receiving 9044 citations. Previous affiliations of Hermis Iatrou include Helsinki University of Technology & University of Tennessee.


Papers
More filters
Journal ArticleDOI
TL;DR: 1. Multifunctional Initiators.
Abstract: 1. Multifunctional Initiators. 3749 2. Multifunctional Linking Agents 3751 3. Use of Difunctional Monomers 3754 B. Star−Block Copolymers 3754 C. Functionalized Stars 3755 1. Functionalized Initiators 3755 2. Functionalized Terminating Agents 3756 D. Asymmetric Stars 3757 1. Molecular Weight Asymmetry 3757 2. Functional Group Asymmetry 3760 3. Topological Asymmetry 3761 E. Miktoarm Star Polymers 3761 1. Chlorosilane Method 3761 2. Divinylbenzene Method 3766 3. Diphenylethylene Derivative Method 3766 4. Synthesis of Miktoarm Stars by Other Methods 3770

1,196 citations

Journal ArticleDOI
TL;DR: A review of living and controlled/living methodologies for the synthesis of polymers with different macromolecular architectures is presented in this paper, along with a few representative examples.

571 citations

Journal ArticleDOI
TL;DR: The basic principles of anionic polymerization as well as detailed experimental methods for the purification of the reagents usually used for the synthesis of model polymeric materials are described in this paper.
Abstract: Anionic polymerization is a powerful tool for the synthesis of a variety of model materials with well-defined molecular characteristics. However specially designed apparatuses and appropriate high vacuum techniques are needed in order to exclude from the reaction environment all reactive contaminants with the anionic centers. This review describes the basic principles of anionic polymerization as well as detailed experimental methods for the purification of the reagents usually used for the synthesis of model polymeric materials. In addition a few examples of the synthesis of polymers with complex architecture are given. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3211–3234, 2000

537 citations

Journal ArticleDOI
TL;DR: The relationship between ionic conductivity, morphology, and rheological properties of polystyrene-block-poly(ethylene oxide) copolymers (SEO) doped with a lithium salt, Li[N(SO2CF3)2], is elucidated in this article.
Abstract: The relationship between ionic conductivity, morphology, and rheological properties of polystyrene-block-poly(ethylene oxide) copolymers (SEO) doped with a lithium salt, Li[N(SO2CF3)2], is elucidated. We focus on lamellar samples with poly(ethylene oxide) (PEO) volume fractions, φ, ranging from 0.38 to 0.55, and PEO block molecular weights, MPEO, ranging from 16 to 98 kg/mol. The low-frequency storage modulus (G‘) at 90 °C increases with increasing MPEO from about 4 × 105 to 5 × 107 Pa. Surprisingly, the conductivity of the SEO/salt mixtures with the molar ratio of Li to ethylene oxide moieties of 0.02 σ, also increases with increasing MPEO, from 6.2 × 10-5 to 3.6 × 10-4 S/cm at 90 °C. We compare σ with the conductivity of pure PEO/salt mixtures, σPEO, and find that σ/[φσPEO] of our highest molecular weight sample is close to 0.67, the theoretical upper limit for transport through randomly oriented lamellar grains.

460 citations

Journal ArticleDOI
TL;DR: This review highlights the mechanistic developments of the ROP of NCAs from the conventional to the living initiating systems/methods; the second is dedicated to the synthesis of polypeptide hybrids with different macromolecular architectures; and the third deals with surface-boundpolypeptides.
Abstract: Since 1906, when Leuchs synthesized the first R-amino acid N-carboxyanhydrides (NCAs),1 later referred to as Leuchs’ anhydrides, a great number of publications dealing with the ring-opening polymerization (ROP) of these monomers (Scheme 1) has accumulated. This interest stems from the wide variety of polypeptides that this polymerization can generate. The synthetic polypeptides produced from the NCAs, although far from being monodisperse or constructed from a precise sequence and composition of R-amino acid residues, possess the ability, as their natural relative-proteins, to form R-helix and -sheet motifs. These secondary structures contribute significantly to the self-assembling character of polypeptide chains, leading to novel supramolecular structures with potential biomedical and pharmaceutical applications.2 As for their natural counterparts, it is important for such synthetic polypeptides to be well-defined with high molecular and structural homogeneity in order to favor their selfassembly into precisely defined nanostructures, a requirement for appropriate functionality. It was not until 1997, when Deming3 reported the first living initiating system for the ROP of NCAs, that the synthesis of well-defined polypeptides was achieved. Following this first report, other alternative living initiating systems or methods have also been developed. These living systems lead to well-defined homo-/copolypeptides and hybrids, with high molecular weight and structural homogeneity. Nevertheless, the earlier studies served as the springboard for developments in the whole area of polypeptide synthesis. Several excellent reviews4 have been dedicated to the ROP of NCAs, elucidating the mechanistic aspects of this polymerization. However, only a few have addressed the synthesis of polypeptide-based materials with different macromolecular architectures.4c,5,6 This review is divided into three parts. The first highlights the mechanistic developments of the ROP of NCAs from the conventional to the living initiating systems/methods; the second is dedicated to the synthesis of polypeptides and polypeptide hybrids with different macromolecular architectures; and the third deals with surface-bound polypeptides. Surface-bound polypeptides were incorporated in the review due to the great interest in biologically active surfaces for medical diagnostics and sensors.7

454 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them, and summarizes cellulOSE nanoparticles in terms of particle morphology, crystal structure, and properties.
Abstract: This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction cellulose composites. Additionally, advances in predictive modeling from molecular dynamic simulations of crystalline cellulose to the continuum modeling of composites made with such particles are reviewed (392 references).

4,920 citations

Journal ArticleDOI
TL;DR: The current understanding on Li anodes is summarized, the recent key progress in materials design and advanced characterization techniques are highlighted, and the opportunities and possible directions for future development ofLi anodes in applications are discussed.
Abstract: Lithium-ion batteries have had a profound impact on our daily life, but inherent limitations make it difficult for Li-ion chemistries to meet the growing demands for portable electronics, electric vehicles and grid-scale energy storage. Therefore, chemistries beyond Li-ion are currently being investigated and need to be made viable for commercial applications. The use of metallic Li is one of the most favoured choices for next-generation Li batteries, especially Li-S and Li-air systems. After falling into oblivion for several decades because of safety concerns, metallic Li is now ready for a revival, thanks to the development of investigative tools and nanotechnology-based solutions. In this Review, we first summarize the current understanding on Li anodes, then highlight the recent key progress in materials design and advanced characterization techniques, and finally discuss the opportunities and possible directions for future development of Li anodes in applications.

4,302 citations

Journal ArticleDOI
TL;DR: In this article, various factors that affect the morphology and Coulombic efficiency of Li metal anodes have been analyzed, and the results obtained by modelling of Li dendrite growth have also been reviewed.
Abstract: Lithium (Li) metal is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mA h g−1), low density (0.59 g cm−3) and the lowest negative electrochemical potential (−3.040 V vs. the standard hydrogen electrode). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post-Li-ion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li–air batteries, Li–S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this paper, various factors that affect the morphology and Coulombic efficiency of Li metal anodes have been analyzed. Technologies utilized to characterize the morphology of Li deposition and the results obtained by modelling of Li dendrite growth have also been reviewed. Finally, recent development and urgent need in this field are discussed.

3,394 citations

Journal ArticleDOI
27 Aug 2015-Cell
TL;DR: It is proposed that liquid-like compartments carry the trade-off between functionality and risk of aggregation and that aberrant phase transitions within liquid- like compartments lie at the heart of ALS and, presumably, other age-related diseases.

1,988 citations