scispace - formally typeset
Search or ask a question
Author

Herve Aussel

Bio: Herve Aussel is an academic researcher from Paris Diderot University. The author has contributed to research in topics: Galaxy & Redshift. The author has an hindex of 112, co-authored 323 publications receiving 46927 citations. Previous affiliations of Herve Aussel include University of Hawaii & Institut d'Astrophysique de Paris.


Papers
More filters
Journal ArticleDOI
TL;DR: The Cosmic Evolution Survey (COSMOS) as mentioned in this paper is designed to probe the correlated evolution of galaxies, star formation, active galactic nuclei (AGNs), and dark matter (DM) with large-scale structure (LSS) over the redshift range z > 0.5-6.
Abstract: The Cosmic Evolution Survey (COSMOS) is designed to probe the correlated evolution of galaxies, star formation, active galactic nuclei (AGNs), and dark matter (DM) with large-scale structure (LSS) over the redshift range z > 0.5-6. The survey includes multiwavelength imaging and spectroscopy from X-ray-to-radio wavelengths covering a 2 deg^2 area, including HST imaging. Given the very high sensitivity and resolution of these data sets, COSMOS also provides unprecedented samples of objects at high redshift with greatly reduced cosmic variance, compared to earlier surveys. Here we provide a brief overview of the survey strategy, the characteristics of the major COSMOS data sets, and a summary the science goals.

1,848 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, M. I. R. Alves2, C. Armitage-Caplan3  +469 moreInstitutions (89)
TL;DR: The European Space Agency's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009 as discussed by the authors.
Abstract: The European Space Agency’s Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter ΛCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25σ. Planck finds no evidence for non-Gaussianity in the CMB. Planck’s results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations (σ8) derived from CMB data and that derived from Sunyaev-Zeldovich data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak. Analysis of Planck polarization data is not yet mature, therefore polarization results are not released, although the robust detection of E-mode polarization around CMB hot and cold spots is shown graphically.

1,719 citations

Journal ArticleDOI
TL;DR: In this paper, the first results from the Gould Belt survey, obtained toward the Aquila Rift and Polaris Flare regions during the'science demonstration phase' of Herschel, were summarized.
Abstract: We summarize the first results from the Gould Belt survey, obtained toward the Aquila Rift and Polaris Flare regions during the 'science demonstration phase' of Herschel. Our 70-500 micron images taken in parallel mode with the SPIRE and PACS cameras reveal a wealth of filamentary structure, as well as numerous dense cores embedded in the filaments. Between ~ 350 and 500 prestellar cores and ~ 45-60 Class 0 protostars can be identified in the Aquila field, while ~ unbound starless cores and no protostars are observed in the Polaris field. The prestellar core mass function (CMF) derived for the Aquila region bears a strong resemblance to the stellar initial mass function (IMF), already confirming the close connection between the CMF and the IMF with much better statistics than earlier studies. Comparing and contrasting our Herschel results in Aquila and Polaris, we propose an observationally-driven scenario for core formation according to which complex networks of long, thin filaments form first within molecular clouds, and then the densest filaments fragment into a number of prestellar cores via gravitational instability.

1,542 citations

Journal ArticleDOI
TL;DR: In this article, a chi2 template-fitting method was used and calibrated with large spectroscopic samples from VLT-VIMOS and Keck-DEIMOS.
Abstract: We present accurate photometric redshifts in the 2-deg2 COSMOS field. The redshifts are computed with 30 broad, intermediate, and narrow bands covering the UV (GALEX), Visible-NIR (Subaru, CFHT, UKIRT and NOAO) and mid-IR (Spitzer/IRAC). A chi2 template-fitting method (Le Phare) was used and calibrated with large spectroscopic samples from VLT-VIMOS and Keck-DEIMOS. We develop and implement a new method which accounts for the contributions from emission lines (OII, Hbeta, Halpha and Ly) to the spectral energy distributions (SEDs). The treatment of emission lines improves the photo-z accuracy by a factor of 2.5. Comparison of the derived photo-z with 4148 spectroscopic redshifts (i.e. Delta z = zs - zp) indicates a dispersion of sigma_{Delta z/(1+zs)}=0.007 at i<22.5, a factor of 2-6 times more accurate than earlier photo-z in the COSMOS, CFHTLS and COMBO-17 survey fields. At fainter magnitudes i<24 and z<1.25, the accuracy is sigma_{Delta z/(1+zs)}=0.012. The deep NIR and IRAC coverage enables the photo-z to be extended to z~2 albeit with a lower accuracy (sigma_{Delta z/(1+zs)}=0.06 at i~24). The redshift distribution of large magnitude-selected samples is derived and the median redshift is found to range from z=0.66 at 22

1,281 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the infrared (IR) 3-500μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data.
Abstract: We present the deepest 100 to 500 μm far-infrared observations obtained with the Herschel Space Observatory as part of the GOODS-Herschel key program, and examine the infrared (IR) 3–500 μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data. We determine the projected star formation densities of local galaxies from their radio and mid-IR continuum sizes. We find that the ratio of total IR luminosity to rest-frame 8 μm luminosity, IR8 (≡ L_(IR)^(tot)/L_8), follows a Gaussian distribution centered on IR8 = 4 (σ = 1.6) and defines an IR main sequence for star-forming galaxies independent of redshift and luminosity. Outliers from this main sequence produce a tail skewed toward higher values of IR8. This minority population ( 3 × 10^(10) L_⊙ kpc^(-2)) and a high specific star formation rate (i.e., starbursts). The rest-frame, UV-2700 A size of these distant starbursts is typically half that of main sequence galaxies, supporting the correlation between star formation density and starburst activity that is measured for the local sample. Locally, luminous and ultraluminous IR galaxies, (U)LIRGs (L_(IR)^(tot)≥ 10^(11) L_☉), are systematically in the starburst mode, whereas most distant (U)LIRGs form stars in the “normal” main sequence mode. This confusion between two modes of star formation is the cause of the so-called “mid-IR excess” population of galaxies found at z > 1.5 by previous studies. Main sequence galaxies have strong polycyclic aromatic hydrocarbon (PAH) emission line features, a broad far-IR bump resulting from a combination of dust temperatures (T_(dust) ~ 15–50 K), and an effective T_(dust) ~ 31 K, as derived from the peak wavelength of their infrared SED. Galaxies in the starburst regime instead exhibit weak PAH equivalent widths and a sharper far-IR bump with an effective T_(dust)~ 40 K. Finally, we present evidence that the mid-to-far IR emission of X-ray active galactic nuclei (AGN) is predominantly produced by star formation and that candidate dusty AGNs with a power-law emission in the mid-IR systematically occur in compact, dusty starbursts. After correcting for the effect of starbursts on IR8, we identify new candidates for extremely obscured AGNs.

1,235 citations


Cited by
More filters
Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Abstract: We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

9,745 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +324 moreInstitutions (70)
TL;DR: In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Abstract: This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ≲ l ≲ 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in an otherwise self-consistent analysis of the Planck temperature data.

7,060 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the difference between the measured and predicted colors of a star, as derived from stellar parameters from the Sloan Extension for Galactic Understanding and Exploration Stellar Parameter Pipeline, and achieved uncertainties of 56, 34, 25, and 29 mmag in the colors u − g, g − r, r − i, and i − z, per star.
Abstract: We present measurements of dust reddening using the colors of stars with spectra in the Sloan Digital Sky Survey. We measure reddening as the difference between the measured and predicted colors of a star, as derived from stellar parameters from the Sloan Extension for Galactic Understanding and Exploration Stellar Parameter Pipeline. We achieve uncertainties of 56, 34, 25, and 29 mmag in the colors u – g, g – r, r – i, and i – z, per star, though the uncertainty varies depending on the stellar type and the magnitude of the star. The spectrum-based reddening measurements confirm our earlier "blue tip" reddening measurements, finding reddening coefficients different by –3%, 1%, 1%, and 2% in u – g, g – r, r – i, and i – z from those found by the blue tip method, after removing a 4% normalization difference. These results prefer an RV = 3.1 Fitzpatrick reddening law to O'Donnell or Cardelli et al. reddening laws. We provide a table of conversion coefficients from the Schlegel et al. (SFD) maps of E(B – V) to extinction in 88 bandpasses for four values of RV , using this reddening law and the 14% recalibration of SFD first reported by Schlafly et al. and confirmed in this work.

6,643 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter LCDM cosmology.
Abstract: We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r<0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles. Using BAO and CMB data, we find N_eff=3.30+/-0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino mass. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N_eff=3.046. We find no evidence for dynamical dark energy. Despite the success of the standard LCDM model, this cosmology does not provide a good fit to the CMB power spectrum at low multipoles, as noted previously by the WMAP team. While not of decisive significance, this is an anomaly in an otherwise self-consistent analysis of the Planck temperature data.

6,201 citations