scispace - formally typeset
Search or ask a question
Author

Hervé Quiquampoix

Bio: Hervé Quiquampoix is an academic researcher from SupAgro. The author has contributed to research in topics: Adsorption & Bacillus thuringiensis. The author has an hindex of 30, co-authored 60 publications receiving 2501 citations. Previous affiliations of Hervé Quiquampoix include University of Oxford & Arts et Métiers ParisTech.


Papers
More filters
Journal ArticleDOI
TL;DR: The results emphasize the importance of electrostatic interactions in both adsorption processes, and the forces that attract hydrophobic side chains toward the protein-clay interface are large enough to distort peripheral amphiphilic helical domains.

219 citations

Journal ArticleDOI
TL;DR: It was determined that clay-bound DNA submitted to an increasing range of nuclease concentrations was physically protected and transformation efficiency was related to the perpetuation mechanism, with homologous recombination being less sensitive to nucleases than autonomous replication, which requires intact molecules.
Abstract: In order to determine the mechanisms involved in the persistence of extracellular DNA in soils and to monitor whether bacterial transformation could occur in such an environment, we developed artificial models composed of plasmid DNA adsorbed on clay particles. We determined that clay-bound DNA submitted to an increasing range of nuclease concentrations was physically protected. The protection mechanism was mainly related to the adsorption of the nuclease on the clay mineral. The biological potential of the resulting DNA was monitored by transforming the naturally competent proteobacterium Acinetobacter sp. strain BD413, allowing us to demonstrate that adsorbed DNA was only partially available for transformation. This part of the clay-bound DNA which was available for bacteria, was also accessible to nucleases, while the remaining fraction escaped both transformation and degradation. Finally, transformation efficiency was related to the perpetuation mechanism, with homologous recombination being less sensitive to nucleases than autonomous replication, which requires intact molecules.

204 citations

Journal ArticleDOI
01 Dec 2007-Elements
TL;DR: Proteins have long been recognized as important compounds in the biogeochemical cycles of terrestrial ecosystems and are implicated in new environmental topics, such as soil carbon storage, horizontal transmission of spongiform encephalopathies and potential negative effects of insecticidal toxins released from transgenic plants.
Abstract: Proteins have long been recognized as important compounds in the biogeochemical cycles of terrestrial ecosystems. They can, for example, provide a source of nitrogen for plants and soil microorganisms following proteolysis and ammonification. Extracellular enzymes liberated in soil are essential catalysts in the mobilization of carbon, nitrogen, phosphorus and sulphur from macromolecular organic matter. Proteins are also implicated in new environmental topics, such as soil carbon storage, horizontal transmission of spongiform encephalopathies and potential negative effects of insecticidal toxins released from transgenic plants.

108 citations

Journal ArticleDOI
TL;DR: The inactivation of the catalytic activity of the adsorbed enzyme in the 5-7 pD range is due less to these structural changes than to steric hindrance when three essential imino/amino functions are oriented toward the negatively charged mineral surface.

105 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors extensively review the principles of anaerobic digestion, the process parameters and their interaction, the design methods, the biogas utilisation, the possible problems and potential pro-active cures, and the recent developments to reduce the impact of the problems.

2,616 citations

Journal ArticleDOI
TL;DR: In this article, a review of the mechanisms that are currently, but often contradictorily or inconsistently, considered to contribute to organic matter (OM) protection against decomposition in temperate soils is presented.
Abstract: Summary Mechanisms for C stabilization in soils have received much interest recently due to their relevance in the global C cycle. Here we review the mechanisms that are currently, but often contradictorily or inconsistently, considered to contribute to organic matter (OM) protection against decomposition in temperate soils: (i) selective preservation due to recalcitrance of OM, including plant litter, rhizodeposits, microbial products, humic polymers, and charred OM; (ii) spatial inaccessibility of OM against decomposer organisms due to occlusion, intercalation, hydrophobicity and encapsulation; and (iii) stabilization by interaction with mineral surfaces (Fe-, Al-, Mn-oxides, phyllosilicates) and metal ions. Our goal is to assess the relevance of these mechanisms to the formation of soil OM during different stages of decomposition and under different soil conditions. The view that OM stabilization is dominated by the selective preservation of recalcitrant organic components that accumulate in proportion to their chemical properties can no longer be accepted. In contrast, our analysis of mechanisms shows that: (i) the soil biotic community is able to disintegrate any OM of natural origin; (ii) molecular recalcitrance of OM is relative, rather than absolute; (iii) recalcitrance is only important during early decomposition and in active surface soils; while (iv) during late decomposition and in the subsoil, the relevance of spatial inaccessibility and organo-mineral interactions for SOM stabilization increases. We conclude that major difficulties in the understanding and prediction of SOM dynamics originate from the simultaneous operation of several mechanisms. We discuss knowledge gaps and promising directions of future research.

2,332 citations

Journal ArticleDOI
TL;DR: The collective vision of the future of extracellular enzyme research is offered: one that will depend on imaginative thinking as well as technological advances, and be built upon synergies between diverse disciplines.
Abstract: This review focuses on some important and challenging aspects of soil extracellular enzyme research. We report on recent discoveries, identify key research needs and highlight the many opportunities offered by interactions with other microbial enzymologists. The biggest challenges are to understand how the chemical, physical and biological properties of soil affect enzyme production, diffusion, substrate turnover and the proportion of the product that is made available to the producer cells. Thus, the factors that regulate the synthesis and secretion of extracellular enzymes and their distribution after they are externalized are important topics, not only for soil enzymologists, but also in the broader context of microbial ecology. In addition, there are many uncertainties about the ways in which microbes and their extracellular enzymes overcome the generally destructive, inhibitory and competitive properties of the soil matrix, and the various strategies they adopt for effective substrate detection and utilization. The complexity of extracellular enzyme activities in depolymerising macromolecular organics is exemplified by lignocellulose degradation and how the many enzymes involved respond to structural diversity and changing nutrient availabilities. The impacts of climate change on microbes and their extracellular enzymes, although of profound importance, are not well understood but we suggest how they may be predicted, assessed and managed. We describe recent advances that allow for the manipulation of extracellular enzyme activities to facilitate bioremediation, carbon sequestration and plant growth promotion. We also contribute to the ongoing debate as to how to assay enzyme activities in soil and what the measurements tell us, in the context of both traditional methods and the newer techniques that are being developed and adopted. Finally, we offer our collective vision of the future of extracellular enzyme research: one that will depend on imaginative thinking as well as technological advances, and be built upon synergies between diverse disciplines.

1,475 citations

Journal ArticleDOI
TL;DR: This review focuses on the diversity of PSM, mechanism of P solubilization, role of various phosphatases, impact of various factors on P solubsility, present and future scenario of their use and potential for application of this knowledge in managing a sustainable environmental system.
Abstract: Phosphorus is the second important key element after nitrogen as a mineral nutrient in terms of quantitative plant requirement. Although abundant in soils, in both organic and inorganic forms, its availability is restricted as it occurs mostly in insoluble forms. The P content in average soil is about 0.05% (w/w) but only 0.1% of the total P is available to plant because of poor solubility and its fixation in soil (Illmer and Schinner, Soil Biol Biochem 27:257-263, 1995). An adequate supply of phosphorus during early phases of plant development is important for laying down the primordia of plant reproductive parts. It plays significant role in increasing root ramification and strength thereby imparting vitality and disease resistance capacity to plant. It also helps in seed formation and in early maturation of crops like cereals and legumes. Poor availability or deficiency of phosphorus (P) markedly reduces plant size and growth. Phosphorus accounts about 0.2 - 0.8% of the plant dry weight. To satisfy crop nutritional requirements, P is usually added to soil as chemical P fertilizer, however synthesis of chemical P fertilizer is highly energy intensive processes, and has long term impacts on the environment in terms of eutrophication, soil fertilility depletion, carbon footprint. Moreover, plants can use only a small amount of this P since 75–90% of added P is precipitated by metal–cation complexes, and rapidly becomes fixed in soils. Such environmental concerns have led to the search for sustainable way of P nutrition of crops. In this regards phosphate-solubilizing microorganisms (PSM) have been seen as best eco-friendly means for P nutrition of crop. Although, several bacterial (pseudomonads and bacilli) and fungal strains (Aspergilli and Penicillium) have been identified as PSM their performance under in situ conditions is not reliable and therefore needs to be improved by using either genetically modified strains or co-inoculation techniques. This review focuses on the diversity of PSM, mechanism of P solubilization, role of various phosphatases, impact of various factors on P solubilization, the present and future scenario of their use and potential for application of this knowledge in managing a sustainable environmental system.

1,386 citations

Journal ArticleDOI
TL;DR: In this review recent achievements and new perspectives on protein adsorption processes are comprehensively discussed and the main focus is put on commonly postulated mechanistic aspects and their translation into mathematical concepts and model descriptions.

1,328 citations