scispace - formally typeset
Search or ask a question
Author

Hessam Rouhi

Bio: Hessam Rouhi is an academic researcher from University of Gilan. The author has contributed to research in topics: Boundary value problem & Finite element method. The author has an hindex of 27, co-authored 132 publications receiving 2476 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a nonlocal elastic plate model was developed to investigate the vibrational behavior of multi-layered graphene sheets under various boundary conditions, including the interaction of van der Waals forces between adjacent and non-adjacent layers and the reaction from the surrounding media.

151 citations

Journal ArticleDOI
TL;DR: In this paper, the free vibration response of double-walled carbon nanotubes (DWCNTs) is investigated and the Rayleigh-ritz technique is applied to consider different sets of boundary conditions.

150 citations

Journal ArticleDOI
TL;DR: In this paper, a nonlocal geometrically nonlinear beam model is developed for magneto-electro-thermo-elastic (METE) nanobeams subjected to external electric voltage, external magnetic potential and uniform temperature rise.

136 citations

Journal ArticleDOI
TL;DR: In this article, the authors incorporated Eringen's nonlocality into the shell theory to include the small-scale effects on the axial buckling of single-walled carbon nanotubes (SWCNTs) with arbitrary boundary conditions.

105 citations

Journal ArticleDOI
TL;DR: In this article, the vibrational characteristics of single-walled carbon nanotubes (SWCNTs) were investigated based on the gradient elasticity theories. But, the authors did not consider the effect of inertia and strain gradients on the free vibration response.
Abstract: The present work aims at investigating the vibrational characteristics of single-walled carbon nanotubes (SWCNTs) based on the gradient elasticity theories. The small-size effect, which plays an essential role in the dynamical behavior of nanotubes, is captured by applying different gradient elasticity theories including stress, strain and combined strain/inertia ones. The theoretical formulations are established based upon both the Euler–Bernoulli and the Timoshenko beam theories. To validate the accuracy of the present analysis, molecular dynamics (MDs) simulations are also conducted for an armchair SWCNTs with different aspect ratios. Comparisons are made between the aforementioned different gradient theories as well as different beam assumptions in predicting the free vibration response. It is shown that implementation of the strain gradient elasticity by incorporating inertia gradients yields more reliable results especially for shorter length SWCNTs on account of two small scale factors corresponding to the inertia and strain gradients. Also, the difference between two beam models is more prominent for low aspect ratios and the Timoshenko beam model demonstrates a closer agreement with MD results.

86 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a higher-order non-local strain gradient elasticity model is proposed, which is based on the nonlocal effects of the strain field and first gradient strain field.
Abstract: In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed It is based on the nonlocal effects of the strain field and first gradient strain field This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects

1,085 citations

Journal ArticleDOI
TL;DR: A state-of-the-art research into graphdiynes and graphynes is summarized, with a focus on the latest theoretical and experimental results.
Abstract: Flat carbon (sp(2) and sp) networks endow the graphdiyne and graphyne families with high degrees of π-conjunction, uniformly distributed pores, and tunable electronic properties; therefore, these materials are attracting much attention from structural, theoretical, and synthetic scientists wishing to take advantage of their promising electronic, optical, and mechanical properties. In this Review, we summarize a state-of-the-art research into graphdiynes and graphynes, with a focus on the latest theoretical and experimental results. In addition to the many theoretical predictions of the potential properties of graphdiynes and graphynes, we also discuss experimental attempts to synthesize and apply graphdiynes in the areas of electronics, photovoltaics, and catalysis.

868 citations

Journal ArticleDOI
TL;DR: GDY has recently revealed the practicality of GDY as catalyst; in rechargeable batteries, solar cells, electronic devices, magnetism, detector, biomedicine, and therapy; and for gas separation as well as water purification.
Abstract: Graphynes (GYs) are carbon allotropes with single-atom thickness that feature layered 2D structure assembled by carbon atoms with sp- and sp2- hybridization form. Various functional theories have predicted GYs to have natural band gap with Dirac cones structure, presumably originating from inhomogeneous π-bonding between those carbon atoms with different hybridization and overlap of the carbon 2pz orbitals. Among all the GYs, graphdiyne (GDY) was the first reported to be prepared practically and, hence, attracted the attention of many researchers toward this new planar, layered material, as well as other GYs. Several approaches have been reported to be able to modify the band gap of GDY, containing invoking strain, boron/nitrogen doping, nanoribbon architectures, hydrogenation, and so on. GDY has been well-prepared in many different morphologies, like nanowires, nanotube arrays, nanowalls, nanosheets, ordered stripe arrays, and 3D framwork. The fascinating structure and electronic properties of GDY make i...

648 citations

Journal ArticleDOI
TL;DR: It is reported that high-quality single-crystalline mono- and few-layer BN nanosheets are one of the strongest electrically insulating materials and more intriguingly, few- Layer BN shows mechanical behaviours quite different from those of few- layer graphene under indentation.
Abstract: Atomically thin boron nitride (BN) nanosheets are important two-dimensional nanomaterials with many unique properties distinct from those of graphene, but investigation into their mechanical properties remains incomplete. Here we report that high-quality single-crystalline mono- and few-layer BN nanosheets are one of the strongest electrically insulating materials. More intriguingly, few-layer BN shows mechanical behaviours quite different from those of few-layer graphene under indentation. In striking contrast to graphene, whose strength decreases by more than 30% when the number of layers increases from 1 to 8, the mechanical strength of BN nanosheets is not sensitive to increasing thickness. We attribute this difference to the distinct interlayer interactions and hence sliding tendencies in these two materials under indentation. The significantly better interlayer integrity of BN nanosheets makes them a more attractive candidate than graphene for several applications, for example, as mechanical reinforcements.

540 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an introduction to the development of the nonlocal continuum theory in modeling the nano-materials, survey the different non-local continuum models, and motivate further applications of nonlocal theory to nanomaterial modeling.

492 citations