scispace - formally typeset
Search or ask a question
Author

Heyam Hayder

Other affiliations: University of Toronto
Bio: Heyam Hayder is an academic researcher from York University. The author has contributed to research in topics: Trophoblast & Placenta. The author has an hindex of 4, co-authored 5 publications receiving 1380 citations. Previous affiliations of Heyam Hayder include University of Toronto.

Papers
More filters
Journal ArticleDOI
TL;DR: An update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations and the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs is provided.
Abstract: MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3' untranslated region (3' UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5' UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.

2,538 citations

Journal ArticleDOI
TL;DR: The current knowledge about the expression and function of miRNAs in placental development is reviewed, the future directions for miRNA studies are proposed, and more studies are required to further understand the functional significance of miRNA as well as explore the possibility of using them as biomarkers and therapeutic targets for pregnancy-related disorders.
Abstract: MicroRNAs (miRNAs) are small non-coding RNAs, which function as critical posttranscriptional regulators of gene expression by promoting mRNA degradation and translational inhibition. Placenta expresses many ubiquitous as well as specific miRNAs. These miRNAs regulate trophoblast cell differentiation, proliferation, apoptosis, invasion/migration, and angiogenesis, suggesting that miRNAs play important roles during placental development. Aberrant miRNAs expression has been linked to pregnancy complications, such as preeclampsia. Recent research of placental miRNAs focuses on identifying placental miRNA species, examining differential expression of miRNAs between placentas from normal and compromised pregnancies, and uncovering the function of miRNAs in the placenta. More studies are required to further understand the functional significance of miRNAs in placental development and to explore the possibility of using miRNAs as biomarkers and therapeutic targets for pregnancy-related disorders. In this paper, we reviewed the current knowledge about the expression and function of miRNAs in placental development, and propose future directions for miRNA studies.

215 citations

Journal ArticleDOI
TL;DR: An overview of canonical and non-canonical pathways of miRNA biogenesis and mechanisms of mi RNA actions is provided and the current knowledge of the role of miRNAs in placental development is highlighted.
Abstract: MicroRNAs (miRNAs) are small non-coding single-stranded RNAs that are integral to a wide range of cellular processes mainly through the regulation of translation and mRNA stability of their target genes. The placenta is a transient organ that exists throughout gestation in mammals, facilitating nutrient and gas exchange and waste removal between the mother and the fetus. miRNAs are expressed in the placenta, and many studies have shown that miRNAs play an important role in regulating trophoblast differentiation, migration, invasion, proliferation, apoptosis, vasculogenesis/angiogenesis and cellular metabolism. In this review, we provide a brief overview of canonical and non-canonical pathways of miRNA biogenesis and mechanisms of miRNA actions. We highlight the current knowledge of the role of miRNAs in placental development. Finally, we point out several limitations of the current research and suggest future directions.

103 citations

Journal ArticleDOI
TL;DR: Two plugins within ImageJ are developed for the sole task of automated hemocytometer (or known volume) and migration/invasion cell counting, combining the core principles of Cell Counter with an automated counting algorithm and post-counting analysis to increase the ease with which migration assays can be processed without any loss of accuracy.
Abstract: The National Institute of Health's ImageJ is a powerful, freely available image processing software suite. ImageJ has comprehensive particle analysis algorithms which can be used effectively to count various biological particles. When counting large numbers of cell samples, the hemocytometer presents a bottleneck with regards to time. Likewise, counting membranes from migration/invasion assays with the ImageJ plugin Cell Counter, although accurate, is exceptionally labor intensive, subjective, and infamous for causing wrist pain. To address this need, we developed two plugins within ImageJ for the sole task of automated hemocytometer (or known volume) and migration/invasion cell counting. Both plugins rely on the ability to acquire high quality micrographs with minimal background. They are easy to use and optimized for quick counting and analysis of large sample sizes with built-in analysis tools to help calibration of counts. By combining the core principles of Cell Counter with an automated counting algorithm and post-counting analysis, this greatly increases the ease with which migration assays can be processed without any loss of accuracy.

49 citations

Journal ArticleDOI
TL;DR: Findings suggest that miR-210-3p may play a role in regulating events associated with enEVT functions and its overexpression could impair spiral artery remodeling, thereby contributing to PE.
Abstract: Hsa-miR-210-3p has been reported to be upregulated in preeclampsia (PE); however, the functions of miR-210-3p in placental development are not fully understood, and, consequently, miR-210-3p’s role in the pathogenesis of PE is still under investigation. In this study, we found that overexpression of miR-210-3p reduced trophoblast migration and invasion, extravillous trophoblast (EVT) outgrowth in first trimester explants, expression of endovascular trophoblast (enEVT) markers and the ability of trophoblast to form endothelial-like networks. In addition, miR-210-3p overexpression significantly downregulated the mRNA levels of interleukin-1B and -8, as well as CXC motif ligand 1. These cytokines have been suggested to play a role in EVT invasion and the recruitment of immune cells to the spiral artery remodeling sites. We also showed that caudal-related homeobox transcription factor 2 (CDX2) is targeted by miR-210-3p and that CDX2 downregulation mimicked the observed effects of miR-210-3p upregulation in trophoblasts. These findings suggest that miR-210-3p may play a role in regulating events associated with enEVT functions and its overexpression could impair spiral artery remodeling, thereby contributing to PE.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations and the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs is provided.
Abstract: MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3' untranslated region (3' UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5' UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.

2,538 citations

01 Jan 2009
TL;DR: In this article, a review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
Abstract: MicroRNAs (miRNAs) are endogenous ∼23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.

646 citations

Journal ArticleDOI
23 Jan 2020-Cells
TL;DR: There is promising evidence that in spite of the lack of standardized protocols regarding the use of miRNA in current clinical practice, they constitute a reliable tool for future use, and it is anticipated that miRNAs will become a routine approach in the development of personalized patient profiles, thus permitting more specific therapeutic interventions.
Abstract: MicroRNAs (miRNAs) represent a class of small, non-coding RNAs with the main roles of regulating mRNA through its degradation and adjusting protein levels. In recent years, extraordinary progress has been made in terms of identifying the origin and exact functions of miRNA, focusing on their potential use in both the research and the clinical field. This review aims at improving the current understanding of these molecules and their applicability in the medical field. A thorough analysis of the literature consulting resources available in online databases such as NCBI, PubMed, Medline, ScienceDirect, and UpToDate was performed. There is promising evidence that in spite of the lack of standardized protocols regarding the use of miRNAs in current clinical practice, they constitute a reliable tool for future use. These molecules meet most of the required criteria for being an ideal biomarker, such as accessibility, high specificity, and sensitivity. Despite present limitations, miRNAs as biomarkers for various conditions remain an impressive research field. As current techniques evolve, we anticipate that miRNAs will become a routine approach in the development of personalized patient profiles, thus permitting more specific therapeutic interventions.

547 citations

Journal ArticleDOI
TL;DR: This review elucidate how miRNA expression is deregulated in cancer, paying particular attention to the cancer-associated transcriptional and post-transcriptional factors that execute miRNA programs.
Abstract: Altered gene expression is the primary molecular mechanism responsible for the pathological processes of human diseases, including cancer. MicroRNAs (miRNAs) are virtually involved at the post-transcriptional level and bind to 3′ UTR of their target messenger RNA (mRNA) to suppress expression. Dysfunction of miRNAs disturbs expression of oncogenic or tumor-suppressive target genes, which is implicated in cancer pathogenesis. As such, a large number of miRNAs have been found to be downregulated or upregulated in human cancers and to function as oncomiRs or oncosuppressor miRs. Notably, the molecular mechanism underlying the dysregulation of miRNA expression in cancer has been recently uncovered. The genetic deletion or amplification and epigenetic methylation of miRNA genomic loci and the transcription factor-mediated regulation of primary miRNA often alter the landscape of miRNA expression in cancer. Dysregulation of the multiple processing steps in mature miRNA biogenesis can also cause alterations in miRNA expression in cancer. Detailed knowledge of the regulatory mechanism of miRNAs in cancer is essential for understanding its physiological role and the implications of cancer-associated dysfunction and dysregulation. In this review, we elucidate how miRNA expression is deregulated in cancer, paying particular attention to the cancer-associated transcriptional and post-transcriptional factors that execute miRNA programs.

417 citations

Journal ArticleDOI
TL;DR: The complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity are summarized.
Abstract: Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell's response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity.

416 citations