scispace - formally typeset
Search or ask a question
Author

Hicham Idriss

Bio: Hicham Idriss is an academic researcher from SABIC. The author has contributed to research in topics: Catalysis & Adsorption. The author has an hindex of 55, co-authored 255 publications receiving 11070 citations. Previous affiliations of Hicham Idriss include University of Aberdeen & King Abdullah University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that Au particles in the size range 3-30 nm on TiO₂ are very active in hydrogen production from ethanol, and the high hydrogen yield observed makes these catalysts promising materials for solar conversion.
Abstract: Catalytic hydrogen production from renewables is a promising method for providing energy carriers in the near future. Photocatalysts capable of promoting this reaction are often composed of noble metal nanoparticles deposited on a semiconductor. The most promising semiconductor at present is TiO₂. The successful design of these catalysts relies on a thorough understanding of the role of the noble metal particle size and the TiO₂ polymorph. Here we demonstrate that Au particles in the size range 3-30 nm on TiO₂ are very active in hydrogen production from ethanol. It was found that Au particles of similar size on anatase nanoparticles delivered a rate two orders of magnitude higher than that recorded for Au on rutile nanoparticles. Surprisingly, it was also found that Au particle size does not affect the photoreaction rate over the 3-12 nm range. The high hydrogen yield observed makes these catalysts promising materials for solar conversion.

1,053 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed overview of dye pollution, dye classification and dye decolourization/degradation strategies is presented, focusing on the mechanisms involved in comparatively well understood TiO2 photocatalysts.
Abstract: The total annual production of synthetic dye is more than 7 × 105 tons. Annually, through only textile waste effluents, around one thousand tons of non-biodegradable textile dyes are discharged into natural streams and water bodies. Therefore, with growing environmental concerns and environmental awareness there is a need for the removal of dyes from local and industrial water effluents with a cost effective technology. In general, these dyes have been found to be resistant to biological as well as physical treatment technologies. In this regard, heterogeneous advanced oxidation processes (AOPs), involving photo-catalyzed degradation of dyes using semiconductor nanoparticles is considered as an efficient cure for dye pollution. In the last two decades TiO2 has received considerable interest because of its high potential as a photocatalyst to degrade a wide range of organic material including dyes. This review starts with (i) a brief overview on dye pollution, dye classification and dye decolourization/degradation strategies; (ii) focuses on the mechanisms involved in comparatively well understood TiO2 photocatalysts and (iii) discusses recent advancements to enhance TiO2 photocatalytic efficiency by (a) doping with metals, non-metals, transition metals, noble metals and lanthanide ions, (b) structural modifications of TiO2 and (c) immobilization of TiO2 by using various supports to make it a flexible and cost-effective commercial dye treatment technology.

911 citations

Journal ArticleDOI
TL;DR: The anatase (101) surface shows a substantially higher activity, by an order of magnitude, for CO photo-oxidation to CO(2) than the rutile (110) surface, which tracks the bulk e-h pair lifetime difference for the two TiO( 2) modifications as determined by contactless transient photoconductance measurements on the corresponding bulk materials.
Abstract: A systematic study on the photocatalytic activity of well-defined, macroscopic bulk single-crystal ${\mathrm{TiO}}_{2}$ anatase and rutile samples has been carried out, which allows us to link photoreactions at surfaces of well-defined oxide semiconductors to an important bulk property with regard to photochemistry, the life time of $e\mathrm{\text{\ensuremath{-}}}h$ pairs generated in the bulk of the oxides by photon absorption. The anatase (101) surface shows a substantially higher activity, by an order of magnitude, for CO photo-oxidation to ${\mathrm{CO}}_{2}$ than the rutile (110) surface. This surprisingly large difference in activity tracks the bulk $e\mathrm{\text{\ensuremath{-}}}h$ pair lifetime difference for the two ${\mathrm{TiO}}_{2}$ modifications as determined by contactless transient photoconductance measurements on the corresponding bulk materials.

326 citations

Journal ArticleDOI
TL;DR: In this article, the reaction of ethanol on unreduced and H2-reduced CeO2 and 1 wt% Pd/CeO2 has been investigated by steady state reactions, temperature programmed desorption (TPD), and in situ Fourier transform infrared (FT-IR) spectroscopy.

297 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Biesinger et al. as mentioned in this paper proposed a more consistent and effective approach to curve fitting based on a combination of standard spectra from quality reference samples, a survey of appropriate literature databases and/or a compilation of literature references and specific literature references where fitting procedures are available.

7,498 citations

Journal ArticleDOI
Ulrike Diebold1
TL;DR: Titanium dioxide is the most investigated single-crystalline system in the surface science of metal oxides, and the literature on rutile (1.1) and anatase surfaces is reviewed in this paper.

7,056 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase transition of Na6(CO3)(SO4)2, Na2SO4, and Na2CO3 of the Na2O/Na2O 2 mixture at the stationary phase and shows clear patterns in the response of these two materials to each other.
Abstract: Jenny Schneider,*,† Masaya Matsuoka,‡ Masato Takeuchi,‡ Jinlong Zhang, Yu Horiuchi,‡ Masakazu Anpo,‡ and Detlef W. Bahnemann*,† †Institut fur Technische Chemie, Leibniz Universitaẗ Hannover, Callinstrasse 3, D-30167 Hannover, Germany ‡Faculty of Engineering, Osaka Prefecture University, 1 Gakuen-cho, Sakai Osaka 599-8531, Japan Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China

4,353 citations