Author
Hidayat Mohd Yusof
Bio: Hidayat Mohd Yusof is an academic researcher from Universiti Putra Malaysia. The author has contributed to research in topics: Animal science & Alkaline phosphatase. The author has an hindex of 6, co-authored 7 publications receiving 188 citations.
Papers
More filters
TL;DR: The biological synthesis of ZnO NPs by the microbes, the mechanisms of the biological synthesis, parameters for the optimization process and their potential application as an antimicrobial agent and feed supplement in the animal industry are reviewed as well as their toxicological hazards on animals are reviewed.
Abstract: In recent years, zinc oxide nanoparticles (ZnO NPs) have gained tremendous attention attributed to their unique properties. Notably, evidence has shown that zinc is an important nutrient in living organisms. As such, both prokaryotes and eukaryotes including bacteria, fungi and yeast are exploited for the synthesis of ZnO NPs by using microbial cells or enzyme, protein and other biomolecules compounds in either an intracellular or extracellular route. ZnO NPs exhibit antimicrobial properties, however, the properties of nanoparticles (NPs) are depended upon on their size and shape, which make them specific for various applications. Nevertheless, the desired size and shape of NPs can be obtained through the optimization process of microbes mediated synthesis by manipulating their reaction conditions. It should be noted that ZnO NPs are synthesized by various chemical and physical methods. Nonetheless, these methods are expensive and not environmentally friendly. On that account, the microbes mediated synthesis of ZnO NPs have rapidly evolved recently where the microbes are cleaner, eco-friendly, non-toxic and biocompatible as the alternatives to chemical and physical practices. Moreover, zinc in the form of NPs is more effective than their bulk counterparts and thus, they have been explored for many potential applications including in animals industry. Notably, with the advent of multi-drug resistant strains, ZnO NPs have emerged as the potential antimicrobial agents. This is mainly due to their superior properties in combating a broad spectrum of pathogens. Moreover, zinc is known as an essential trace element for most of the biological function in the animal’s body. As such, the applications of ZnO NPs have been reported to significantly enhance the health and production of the farm animals. Thus, this paper reviews the biological synthesis of ZnO NPs by the microbes, the mechanisms of the biological synthesis, parameters for the optimization process and their potential application as an antimicrobial agent and feed supplement in the animal industry as well as their toxicological hazards on animals.
297 citations
TL;DR: The biosynthesized ZnO NPs exhibited antibacterial activity against pathogenic bacteria in a concentration-dependent manner and showed biocompatibility with the Vero cell line at specific concentrations, indicating that CFS and CB of L. plantarum TA4 can potentially be used as a nanofactory for the biological synthesis of Zn O NPs.
Abstract: This study aims to utilize the cell-biomass (CB) and supernatant (CFS) of zinc-tolerant Lactobacillus plantarum TA4 as a prospective nanofactory to synthesize ZnO NPs. The surface plasmon resonance for the biosynthesized ZnO NPs-CFS and ZnO NPs-CB was 349 nm and 351 nm, respectively, thereby confirming the formation of ZnO NPs. The FTIR analysis revealed the presence of proteins, carboxyl, and hydroxyl groups on the surfaces of both the biosynthesized ZnO NPs that act as reducing and stabilizing agents. The DLS analysis revealed that the poly-dispersity indexes was less than 0.4 for both ZnO NPs. In addition, the HR-TEM micrographs of the biosynthesized ZnO NPs revealed a flower-like pattern for ZnO NPs-CFS and an irregular shape for ZnO NPs-CB with particles size of 291.1 and 191.8 nm, respectively. In this study, the biosynthesized ZnO NPs exhibited antibacterial activity against pathogenic bacteria in a concentration-dependent manner and showed biocompatibility with the Vero cell line at specific concentrations. Overall, CFS and CB of L. plantarum TA4 can potentially be used as a nanofactory for the biological synthesis of ZnO NPs.
67 citations
TL;DR: The strong ability of zinc-tolerant probiotic of L. plantarum strain TA4 to tolerate high Zn2+ concentration and to produce ZnO NPs highlights the unique properties of these bacteria as a natural microbial cell nanofactory for a more sustainable and eco-friendly practice of Zn O NPs biosynthesis.
Abstract: The use of microorganisms in the biosynthesis of zinc oxide nanoparticles (ZnO NPs) has recently emerged as an alternative to chemical and physical methods due to its low-cost and eco-friendly method. Several lactic acid bacteria (LAB) have developed mechanisms in tolerating Zn2+ through prevention against their toxicity and the production of ZnO NPs. The LAB’s main resistance mechanism to Zn2+ is highly depended on the microorganisms’ ability to interact with Zn2+ either through biosorption or bioaccumulation processes. Besides the inadequate studies conducted on biosynthesis with the use of zinc-tolerant probiotics, the understanding regarding the mechanism involved in this process is not clear. Therefore, this study determines the features of probiotic LAB strain TA4 related to its resistance to Zn2+. It also attempts to illustrate its potential in creating a sustainable microbial cell nanofactory of ZnO NPs. A zinc-tolerant probiotic strain TA4, which was isolated from local fermented food, was selected based on the principal component analysis (PCA) with the highest score of probiotic attributes. Based on the 16S rRNA gene analysis, this strain was identified as Lactobacillus plantarum strain TA4, indicating its high resistance to Zn2+ at a maximum tolerable concentration (MTC) value of 500 mM and its capability of producing ZnO NPs. The UV–visible spectroscopy analysis proved the formations of ZnO NPs through the notable absorption peak at 380 nm. It was also found from the dynamic light scattering (DLS) analysis that the Z-average particle size amounted to 124.2 nm with monodisperse ZnO NPs. Studies on scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy, and Fourier-transform infrared spectroscopy (FT-IR) revealed that the main mechanisms in ZnO NPs biosynthesis were facilitated by the Zn2+ biosorption ability through the functional groups present on the cell surface of strain TA4. The strong ability of zinc-tolerant probiotic of L. plantarum strain TA4 to tolerate high Zn2+ concentration and to produce ZnO NPs highlights the unique properties of these bacteria as a natural microbial cell nanofactory for a more sustainable and eco-friendly practice of ZnO NPs biosynthesis.
60 citations
TL;DR: In this paper, ZnO NPs were successfully synthesized using Lactobacillus plantarum TA4, characterized, and their antibacterial potential against common avian pathogens (Salmonella spp., Escherichia coli, and Staphylococcus aureus) was investigated.
Abstract: Since the emergence of multidrug-resistant bacteria in the poultry industry is currently a serious threat, there is an urgent need to develop a more efficient and alternative antibacterial substance. Zinc oxide nanoparticles (ZnO NPs) have exhibited antibacterial efficacy against a wide range of microorganisms. Although the in vitro antibacterial activity of ZnO NPs has been studied, little is known about the antibacterial mechanisms of ZnO NPs against poultry-associated foodborne pathogens. In the present study, ZnO NPs were successfully synthesized using Lactobacillus plantarum TA4, characterized, and their antibacterial potential against common avian pathogens (Salmonella spp., Escherichia coli, and Staphylococcus aureus) was investigated. Confirmation of ZnO NPs by UV-Visual spectroscopy showed an absorption band center at 360 nm. Morphologically, the synthesized ZnO NPs were oval with an average particle size of 29.7 nm. Based on the dissolution study of Zn2+, ZnO NPs released more ions than their bulk counterparts. Results from the agar well diffusion assay indicated that ZnO NPs effectively inhibited the growth of the three poultry-associated foodborne pathogens. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed using various concentrations of ZnO NPs, which resulted in excellent antibacterial activity as compared to their bulkier counterparts. S. aureus was more susceptible to ZnO NPs compared to the other tested bacteria. Furthermore, the ZnO NPs demonstrated substantial biofilm inhibition and eradication. The formation of reactive oxygen species (ROS) and cellular material leakage was quantified to determine the underlying antibacterial mechanisms, whereas a scanning electron microscope (SEM) was used to examine the morphological changes of tested bacteria treated with ZnO NPs. The findings suggested that ROS-induced oxidative stress caused membrane damage and bacterial cell death. Overall, the results demonstrated that ZnO NPs could be developed as an alternative antibiotic in poultry production and revealed new possibilities in combating pathogenic microorganisms.
34 citations
TL;DR: In this article, the ability of Lactobacillus plantarum TA4 in tolerating Ag+ and its ability to produce silver nanoparticles (AgNPs) was investigated using UV-Visible spectroscopy (UV-Vis), dynamic light scattering (DLS), Fourier transform infrared (FTIR), and high-resolution transmission electron microscope (HR-TEM).
Abstract: The present study aimed to investigate the ability of Lactobacillus plantarum TA4 in tolerating Ag+ and its ability to produce silver nanoparticles (AgNPs). The biosynthesized AgNPs were characterized using UV–Visible spectroscopy (UV–Vis), dynamic light scattering (DLS), Fourier-transform infrared (FTIR), and high-resolution transmission electron microscope (HR-TEM). The cell biomass of L. plantarum TA4 demonstrated the ability to tolerate Ag+ at a concentration of 2 mM, followed by the formation of AgNPs. This was confirmed by the visual observation of color changes and a presence of maximum UV–Vis absorption centered at 429 nm. HR-TEM analysis revealed that the AgNPs were spherical with an average size of 14.0 ± 4.7 nm, while the SEM-EDX analysis detected that the particles were primarily located on the cell membrane of L. plantarum TA4. Further, DLS analysis revealed that the polydispersity index (PDI) value of biosynthesized AgNPs was 0.193, implying the monodispersed characteristic of NPs. Meanwhile, the FTIR study confirmed the involvement of functional groups from the cell biomass that involved in the reduction process. Moreover, biosynthesized AgNPs exhibited antibacterial activity against Gram-positive and Gram-negative pathogens in a concentration-dependent manner. Furthermore, the antioxidant property of biosynthesized AgNPs that was evaluated using the DPPH assay showed considerable antioxidant potential. Results from this study provide a sustainable and inexpensive method for the production of AgNPs.
29 citations
Cited by
More filters
Journal Article•
TL;DR: Probiotic milk‐based formulations were spray‐dried with various combinations of prebiotic substances in an effort to generate synbiotic powder products.
Abstract: AIMS Probiotic milk-based formulations were spray-dried with various combinations of prebiotic substances in an effort to generate synbiotic powder products. METHODS AND RESULTS To examine the effect of growth phase and inclusion of a prebiotic substance in the feed media on probiotic viability during spray-drying, Lactobacillus rhamnosus GG was spray-dried in lag, early log and stationary phases of growth in reconstituted skim milk (RSM) (20% w/v) or RSM (10% w/v), polydextrose (PD) (10% w/v) mixture at an outlet temperature of 85-90 degrees C. Stationary phase cultures survived best (31-50%) in both feed media and were the most stable during powder storage at 4-37 degrees C over 8 weeks, with 30-140-fold reductions in cell viability at 37 degrees C in RSM and PD/RSM powders, respectively. Stationary phase Lact. rhamnosus GG was subsequently spray-dried in the presence of the prebiotic inulin in the feed media, composed of RSM (10% w/v) and inulin (10% w/v), and survival following spray-drying was of the order 7.1-43%, while viability losses of 20,000-90,000-fold occurred in these powders after 8 weeks' storage at 37 degrees C. Survival of the Lactobacillus culture after spray-drying in powders produced using PD (20% w/v) or inulin (20% w/v) as the feed media was only 0.011-0.45%. To compare different probiotic lactobacilli during spray-drying, stationary phase Lact. rhamnosus E800 and Lact. salivarius UCC 500 were spray-dried using the same parameters as for Lact. rhamnosus GG in either RSM (20% w/v) or RSM (10% w/v) and PD (10% w/v). Lact. rhamnosus E800 experienced approx. 25-41% survival, yielding powders containing approximately 10(9) CFU g(-1), while Lact. salivarius UCC 500 performed poorly, experiencing over 99% loss in viability during spray-drying in both feed media. In addition to the superior survival of Lact. rhamnosus GG after spray-drying, both strains experienced higher viability losses (570-700-fold) during storage at 37 degrees C over 8 weeks compared with Lact. rhamnosus GG. CONCLUSIONS Stationary phase cultures were most suitable for the spray-drying process, while lag phase was most susceptible. The presence of the prebiotics PD and inulin did not enhance viability during spray-drying or powder storage. SIGNIFICANCE AND IMPACT OF THE STUDY High viability (approximately 10(9) CFU g(-1)) powders containing probiotic lactobacilli in combination with prebiotics were developed, which may be useful as functional food ingredients for the manufacture of probiotic foods.
348 citations
01 Jan 2016
TL;DR: The genus Paenibacillus comprises bacterial species relevant to humans, animals, plants, and the environment as mentioned in this paper, which can promote crop growth directly via biological nitrogen fixation, phosphate solubilization, production of the phytohormone indole-3-acetic acid (IAA), and release of siderophores that enable iron acquisition.
Abstract: Isolated from a wide range of sources, the genus Paenibacillus comprises bacterial species relevant to humans, animals, plants, and the environment. Many Paenibacillus species can promote crop growth directly via biological nitrogen fixation, phosphate solubilization, production of the phytohormone indole-3-acetic acid (IAA), and release of siderophores that enable iron acquisition. They can also offer protection against insect herbivores and phytopathogens, including bacteria, fungi, nematodes, and viruses. This is accomplished by the production of a variety of antimicrobials and insecticides, and by triggering a hypersensitive defensive response of the plant, known as induced systemic resistance (ISR). Paenibacillus-derived antimicrobials also have applications in medicine, including polymyxins and fusaricidins, which are nonribosomal lipopeptides first isolated from strains of Paenibacillus polymyxa. Other useful molecules include exo-polysaccharides (EPS) and enzymes such as amylases, cellulases, hemicellulases, lipases, pectinases, oxygenases, dehydrogenases, lignin-modifying enzymes, and mutanases, which may have applications for detergents, food and feed, textiles, paper, biofuel, and healthcare. On the negative side, Paenibacillus larvae is the causative agent of American Foulbrood, a lethal disease of honeybees, while a variety of species are opportunistic infectors of humans, and others cause spoilage of pasteurized dairy products. This broad review summarizes the major positive and negative impacts of Paenibacillus: its realised and prospective contributions to agriculture, medicine, process manufacturing, and bioremediation, as well as its impacts due to pathogenicity and food spoilage. This review also includes detailed information in Additional files 1, 2, 3 for major known Paenibacillus species with their locations of isolation, genome sequencing projects, patents, and industrially significant compounds and enzymes. Paenibacillus will, over time, play increasingly important roles in sustainable agriculture and industrial biotechnology.
189 citations
TL;DR: The present review aims to discuss the state of the art regarding the microwave synthesis of undoped and doped ZnO NMs with the possibility to control the properties, repeatability, reproducibility, short synthesis duration, low price, purity, and fulfilment of the eco-friendly approach criterion.
Abstract: Zinc oxide (ZnO) is a multifunctional material due to its exceptional physicochemical properties and broad usefulness. The special properties resulting from the reduction of the material size from the macro scale to the nano scale has made the application of ZnO nanomaterials (ZnO NMs) more popular in numerous consumer products. In recent years, particular attention has been drawn to the development of various methods of ZnO NMs synthesis, which above all meet the requirements of the green chemistry approach. The application of the microwave heating technology when obtaining ZnO NMs enables the development of new methods of syntheses, which are characterised by, among others, the possibility to control the properties, repeatability, reproducibility, short synthesis duration, low price, purity, and fulfilment of the eco-friendly approach criterion. The dynamic development of materials engineering is the reason why it is necessary to obtain ZnO NMs with strictly defined properties. The present review aims to discuss the state of the art regarding the microwave synthesis of undoped and doped ZnO NMs. The first part of the review presents the properties of ZnO and new applications of ZnO NMs. Subsequently, the properties of microwave heating are discussed and compared with conventional heating and areas of application are presented. The final part of the paper presents reactants, parameters of processes, and the morphology of products, with a division of the microwave synthesis of ZnO NMs into three primary groups, namely hydrothermal, solvothermal, and hybrid methods.
184 citations
TL;DR: In this article, zinc oxide nanoparticles (ZnO NPs) were prepared using S. ebulus leaf extract, and their physicochemical properties were investigated using X-ray diffraction (XRD) results revealed that the prepared NPs are highly crystalline, having a wurtzite crystal structure.
Abstract: Plants are one of the best sources to obtain a variety of natural surfactants in the field of green synthesizing material. Sambucus ebulus, which has unique natural properties, has been considered a promising material in traditional Asian medicine. In this context, zinc oxide nanoparticles (ZnO NPs) were prepared using S. ebulus leaf extract, and their physicochemical properties were investigated. X-ray diffraction (XRD) results revealed that the prepared ZnO NPs are highly crystalline, having a wurtzite crystal structure. The average crystallite size of prepared NPs was around 17 nm. Green synthesized NPs showed excellent absorption in the UV region as well as strong yellow-orange emission at room temperature. Prepared nanoparticles exhibited good antibacterial activity against various organisms and a passable photocatalytic degradation of methylene blue dye pollutants. The obtained results demonstrated that the biosynthesized ZnO NPs reveal interesting characteristics for various potential applications in the future.
165 citations
TL;DR: In this paper, the authors consider the latest advances and innovations in the production of metal nanoparticles using green synthesis by different groups of microorganisms and the application of these nanoparticles in various agricultural sectors to achieve food security, improve crop production and reduce the use of pesticides.
Abstract: The agricultural sector is currently facing many global challenges, such as climate change, and environmental problems such as the release of pesticides and fertilizers, which will be exacerbated in the face of population growth and food shortages. Therefore, the need to change traditional farming methods and replace them with new technologies is essential, and the application of nanotechnology, especially green technology offers considerable promise in alleviating these problems. Nanotechnology has led to changes and advances in many technologies and has the potential to transform various fields of the agricultural sector, including biosensors, pesticides, fertilizers, food packaging and other areas of the agricultural industry. Due to their unique properties, nanomaterials are considered as suitable carriers for stabilizing fertilizers and pesticides, as well as facilitating controlled nutrient transfer and increasing crop protection. The production of nanoparticles by physical and chemical methods requires the use of hazardous materials, advanced equipment, and has a negative impact on the environment. Thus, over the last decade, research activities in the context of nanotechnology have shifted towards environmentally friendly and economically viable ‘green’ synthesis to support the increasing use of nanoparticles in various industries. Green synthesis, as part of bio-inspired protocols, provides reliable and sustainable methods for the biosynthesis of nanoparticles by a wide range of microorganisms rather than current synthetic processes. Therefore, this field is developing rapidly and new methods in this field are constantly being invented to improve the properties of nanoparticles. In this review, we consider the latest advances and innovations in the production of metal nanoparticles using green synthesis by different groups of microorganisms and the application of these nanoparticles in various agricultural sectors to achieve food security, improve crop production and reduce the use of pesticides. In addition, the mechanism of synthesis of metal nanoparticles by different microorganisms and their advantages and disadvantages compared to other common methods are presented.
139 citations